1. Hoeper M.M., Humbert M., Souza R. et al. A global view of pulmonary hypertension // Lancet Respir. Med. Elsevier. 2016. Vol. 4, No. 4. P. 306-322. https://doi.org/10.1016/S2213-2600(15)00543-3.
2. Galiè N., Humbert M., Vachiery J.L. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endor // Eur. Respir. J. 2015. Vol. 46, No. 4. P. 903-975. https://doi.org/10.1183/13993003.51032-2015.
3. Humbert M., Kovacs G., Hoeper M.M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG) // Eur. Heart J. Oxford Academic, 2023. Vol. 44, No. 15. P. 1312-1312. https://doi.org/10.1093/eurheartj/ehad005.
4. Gabbay E., Fraser J., McNeil K. Review of bosentan in the management of pulmonary arterial hypertension // Vascular health and risk management. 2007. Vol. 3, 6. R. 887-900. https://doi.org/10.2147/vhrm.s12187426.
5. Chazova I.E., Martynyuk T.V., Valieva Z.S. et al. Eurasian Clinical Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension // Eurasian Journal of Cardiology. 2020. No. 1. P. 78-122. https://doi.org/10.38109/2225-1685-2020-1-78-122.
6. Aliev A.F., Kudryavtsev N.D., Petraikin A.V. et al. Changing of pulmonary artery diameter in accordance with severity of COVID-19 (assessment based on non-contrast computer tomography) // Digit. Diagnostics. Eco-Vector LLC, 2021. Vol. 2, No. 3. P. 249-260. https://doi.org/10.17816/DD76726.
7. Chuchalin A.G., Khaltaev N., Antonov N.S. et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation // Int. J. Chron. Obstruct. Pulmon. Dis. Dove Press. 2014. Vol. 9, No. 1. P. 963-974. https://doi.org/10.2147/COPD.S67283.
8. Lewis G., Hoey E.T., Reynolds J.H. et al. Multi-detector CT assessment in pulmonary hypertension: techniques, systematic approach to interpretation and key findings // Quant. Imaging Med. Surg. AME Publications. 2015. Vol. 5, No. 3. P. 423. https://doi.org/10.3978/j.issn.2223-4292.2015.01.05.
9. Truong Q.A., Massaro J.M., Rogers I.S. et al. Reference Values for Normal Pulmonary Artery Dimensions by Noncontrast Cardiac Computed Tomography // Circ. Cardiovasc. Imaging. 2012. Vol. 5, No. 1. P. 147-154. https://doi.org/10.1161/CIRCIMAGING.111.968610.
10. Gusev A.V., Vladzymyrskyy A.V., Sharova D.E. et al. Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021 // Digit. Diagnostics. 2022. Vol. 3, No. 3. https://doi.org/10.17816/DD107367.
11. Morozov S.P., Vladzymyrskyy A.V., Shulkin I.M. et al. Feasibility of using artificial intelligence in radiology (first year of Moscow experiment on computer vision) // Doctor and information technology. 2022. No. 1. https://doi.org/10.25881/18110193_2022_1_12.
12. Morozov S.P., Gavrilov A.V., Arkhipov I.V. et al. Effect of artificial intelligence technologies on the CT scan interpreting time in COVID-19 patients in inpatient setting // Profil. Meditsina. 2022. Vol. 25, No. 1. https://doi.org/10.17116/profmed20222501114.
13. Maslennikova G.Y., Oganov R.G. Prevention of noncommunicable diseases as an opportunity to increase life expectancy and healthy longevity // Cardiovasc. Ther. Prev. 2019. Vol. 18, No. 2. https://doi.org/10.15829/1728-8800-2019-2-5-12.
14. Zouk A.N., Gulati S., Xing D. et al. Pulmonary artery enlargement is associated with pulmonary hypertension and decreased survival in severe cystic fibrosis: A cohort study // PLoS One. 2020. Vol. 15, No. 2. https://doi.org/10.1371/journal.pone.0229173.
15. Erratum: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ER) // European Respiratory Journal. 2015. Vol. 46, No. 6. https://doi.org/10.1093/eurheartj/ehv317.
16. Lõpez-Campos J.L., Tan W., Soriano J.B. Global burden of COPD // Respirology. 2016. Vol. 21, No. 1. https://doi.org/10.1111/resp.12660.
17. McGhan R., Radcliff T., Fish R. et al. Predictors of rehospitalization and death after a severe exacerbation of COPD // Chest. 2007. Vol. 132, No. 6. https://doi.org/10.1378/chest.06-3018.
18. Gologanu D., Stanescu C., Bogdan M.A. Pulmonary hypertension secondary to chronic obstructive pulmonary disease // Rom. J. Intern. Med. 2012. Vol. 50, No. 4. P. 259-268.
19. Arcasoy S.M., Christie J.D., Ferrari V.A. et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease // Am. J. Respir. Crit. Care Med. 2003. Vol. 167, No. 5. https://doi.org/10.1164/rccm.200210-1130OC.
20. Mandras S.A., Mehta H.S., Vaidya A. Pulmonary Hypertension: A Brief Guide for Clinicians // Mayo Clin. Proc. 2020. Vol. 95, No. 9. https://doi.org/10.1016/j.mayocp.2020.04.039.
21. Iyer A.S., Wells J.M., Vishin S. et al. CT scan-measured pulmonary artery to aorta ratio and echocardiography for detecting pulmonary hypertension in severe COPD // Chest. 2014. Vol. 145, No. 4. https://doi.org/10.1378/chest.13-1422.
22. LaFon D.C., Bhatt S.P., Labaki W.W. et al. Pulmonary artery enlargement and mortality risk in moderate to severe COPD: Results from COPDGene // Eur. Respir. J. 2020. Vol. 55, No. 2. https://doi.org/10.1183/13993003.01812-2019.
23. Wells J.M., Washko G.R., Han M.K. et al. Pulmonary arterial enlargement and acute exacerbations of COPD // N. Engl. J. Med. 2012. Vol. 367, No. 10. https://doi.org/10.1056/NEJMoa1203830.
24. Chen H., Shu T., Wang L. et al. Pulmonary artery enlargement predicts poor survival in patients with COPD: A meta-analysis // Pulm. Circ. 2022. Vol. 12, No. 3. https://doi.org/10.1002/pul2.12099.
25. Terzikhan N., Bos D., Lahousse L. et al. Pulmonary artery to aorta ratio and risk of all-cause mortality in the general population: The Rotterdam Study // Eur. Respir. J. 2017. Vol. 49, No. 6. https://doi.org/10.1183/13993003.02168-2016.
26. Wade R.C., Simmons J.P., Boueiz A. et al. Pulmonary artery enlargement is associated with exacerbations and mortality in ever-smokers with preserved ratio impaired spirometry // Am. J. Respir. Crit. Care Med. 2021. Vol. 204, No. 4. https://doi.org/10.1164/rccm.202103-0619LE.
27. Zhu Q.Q., Gong T., Huang G.Q. et al. Pulmonary artery trunk enlargement on admission as a predictor of mortality in in-hospital patients with COVID-19 // Jpn. J. Radiol. Springer Japan. 2021. Vol. 39, No. 6. P. 589-597. https://doi.org/10.1007/s11604-021-01094-9.
28. Nakanishi R., Rana J.S., Shalev A. et al. Mortality risk as a function of the ratio of pulmonary trunk to ascending aorta diameter in patients with suspected coronary artery disease // Am. J. Cardiol. 2013. Vol. 111, No. 9. https://doi.org/10.1016/j.amjcard.2013.01.266.
29. Solovev A.V., Vasilev Y.A., Sinitsyn V.E. et al. Improving aortic aneurysm detection with artificial intelligence based on chest computed tomography data // Digital Diagnostics. 2024. Vol. 5, No. 1. P. 29-40. https://doi.org/10.17816/DD569388.
30. Vasiliev Yu.A., Bobrovskaya T.M., Arzamasov K.M. et al. Fundamental principles of standardization and systematization of information about data sets for machine learning in medical diagnostics // Manager of Healthcare. 2023. No. 4. P. 28-41. https://doi.org/10.21045/1811-0185-2023-4-28-41.