Preview

Diagnostic radiology and radiotherapy

Advanced search

Current challenges and prospects of magnetic resonance cholangiopancreatography: problems in clinical practice and theoretical approaches to their solution: a review

https://doi.org/10.22328/2079-5343-2025-16-1-47-56

Abstract

INTRODUCTION: Magnetic resonance cholangiopancreatography (MRCP) is a noninvasive diagnostic method for diseases of the biliary tract and pancreas. It provides high-quality images that help physicians diagnose pathologies without the use of ionizing radiation. Despite its widespread use, there are problems associated with image quality, breathing artifacts, lack of standards, and scanning duration.

OBJECTIVE: To analyze the problems arising in the clinical practice of MRCP and evaluate theoretical approaches to their solution.

MATERIALS AND METHODS: Articles from the PubMed, Web of Science, and Scopus databases were used for the review. Attention was paid to studies of the last five years devoted to new visualization methods and theoretical approaches to solving current problems of MRCP. A total of 36 publications were selected and analyzed.

RESULTS: The main problems of clinical application of MRCP include respiratory artifacts, lack of standardized monitoring protocols in primary sclerosing cholangitis (PSC), scanning time and the need to develop shortened protocols for emergency diagnostics. To correct respiratory artifacts, compressed probing (CS) and parallel imaging (PI) methods have been proposed, which improve image quality and reduce scanning time.

DISCUSSION: The review discusses the use of CS and PI methods to improve image quality and reduce scanning time. Accelerated MRCP protocols have been developed for emergency diagnostics, which is especially important for patients with acute conditions. Standardized monitoring protocols for patients with PSC are needed for early diagnosis of malignant neoplasms.

CONCLUSION: MRCP is an important tool in modern diagnostics, but its application faces a number of problems that can be solved through the use of modern technologies, such as CS and PI. The development of new protocols and standardization of monitoring approaches will improve the efficiency of diagnostics and clinical outcomes.

About the Author

A. A. Espanov
Karaganda Medical University
Kazakhstan

Aibek A. Espanov — Radiologist Resident, School of Residency and Professional Development

100000, Karaganda, st. Gogolya, 40



References

1. Breakey S., Harris A.C. Cholangiopancreatography (MRCP) in the Setting of Acute Pancreaticobiliary Disease: Can Certain Clinical Factors Guide Appropriate Utilization? // Canadian Association of Radiologists’ Journal. 2022. Vol. 73, No. 1. Р. 27–29. doi: 10.1177/08465371211025527.

2. Beyer G., Kasprowicz F., Hannemann A. et al. Definition of age-dependent reference values for the diameter of the common bile duct and pancreatic duct on MRCP: a population-based, cross-sectional cohort study // Gut. 2023. Vol. 72, No. 9. Р. 1738–1744. doi: 10.1136/gutjnl-2021-326106.

3. Palwa A.R., Nisar U., Shafique M. et al. The Accuracy of Transabdominal Ultrasound (TAUS) in Detection of Choledocholithiasis Keeping Magnetic Resonance Cholangiopancreatography (MRCP) as Gold Standard // Pak Armed Forces Med. J. 2022. Vol. 72, No. 2. Р. 485–488. doi: 10.1016/j.clinimag.2021.08.007.

4. Chawla S., Sharma M., Makkar A. et al. Comparative assessment to establish the accuracy of MRCP over USG & CT in diagnosing the case of obstructive jaundice // European Journal of Molecular & Clinical Medicine. 2023. Vol. 9, No. 1.

5. Nair A.V., Macdonald D.B., Kelly E.M. et al. Utility of MRCP in surveillance of primary sclerosing cholangitis associated hepatobiliary malignancy: 15-year experience at a single institution in Ontario, Canada // Clinical Imaging. 2021. Vol. 81. Р. 108–114. doi: 10.1016/j.clinimag.2021.08.007.

6. Tokoro H., Yamada A., Suzuki T. et al. Usefulness of breath-hold compressed sensing accelerated three-dimensional magnetic resonance cholangiopancreatography (MRCP) added to respiratory-gating conventional MRCP // European Journal of Radiology. 2020. Vol. 122. Р. 108765. doi: 10.1016/j.ejrad.2019.108765.

7. Kromrey M.-L., Funayama S., Tamada D. et al. Clinical evaluation of respiratory-triggered 3D MRCP with navigator echoes compared to breath-hold acquisition using compressed sensing and/or parallel imaging // Magnetic Resonance in Medical Sciences. 2020. Vol. 19, No. 4. Р. 318–323. doi: 10.2463/mrms.mp-2019-0122.

8. Jena P., Misra A.P., Jena D. To establish the accuracy of MRCP over USG & CT in diagnosing the case of obstructive jaundice with radiological study // International Journal of Radiology and Diagnostic Imaging. 2021. Vol. 4, No. 3. Р. 133–136. doi: 10.33545/26644436.2021.v4.i3b.230.

9. Tso D.K., Almeida R.R., Prabhakar A.M. et al. Accuracy and timeliness of an abbreviated emergency department MRCP protocol for choledocholithiasis // Emergency Radiology. 2019. Vol. 26, No. 5. Р. 513–518. doi: 10.1007/s10140-019-01689-w.

10. Lohöfer F.K., Kaissis G.A., Rasper M. et al. Magnetic resonance cholangiopancreatography at 3 Tesla: Image quality comparison between 3D compressed sensing and 2D single-shot acquisitions // European Journal of Radiology. 2019. Vol. 115. Р. 53–58. doi: 10.1016/j.ejrad.2019.04.002.

11. Wang K., Li X., Liu J. et al. Predicting the image quality of respiratory-gated and breath-hold 3D MRCP from the breathing curve: A prospective study // Abdominal Radiology. 2023. Vol. 33, No. 12. Р. 4333–4343. doi: 10.1007/s00330-022-09293-2.

12. Zhu L., Xue H., Sun Z. et al. Modified breath-hold compressed-sensing 3D MR cholangiopancreatography with a small field-of-view and high resolution acquisition: Clinical feasibility in biliary and pancreatic disorders // Journal of Magnetic Resonance Imaging. 2018. Vol. 48, No. 4. Р. 1389–1399. doi: 10.1002/jmri.26049.

13. Zho S.Y., Park J., Choi J.Y., Kim D.H. Respiratory motion compensated MR cholangiopancreatography at 3.0 Tesla // J. Magn. Reson. Imaging. 2010. Vol. 32, No. 3. Р. 726–732. doi: 10.1002/jmri.22307.

14. Sodickson A., Mortele K.J., Barish M.A. et al. Three-dimensional fast-recovery fast spin-echo MRCP: comparison with two-dimensional single-shot fast spin-echo techniques // Radiology. 2006. Vol. 238, No. 2. Р. 549–559. doi: 10.1148/radiol.2382032065.

15. Yoon J.H., Lee S.M., Kang H.-J. et al. Clinical Feasibility of 3-Dimensional Magnetic Resonance Cholangiopancreatography Using Compressed Sensing: Comparison of Image Quality and Diagnostic Performance // Investigative Radiology. 2017. Vol. 52, No. 10. Р. 612–619. doi: 10.1097/RLI.0000000000000380.

16. Vasanawala S.S., Alley M.T., Hargreaves B.A., Barth R.A., Pauly J.M., Lustig M. Improved pediatric MR imaging with compressed sensing // Radiology. 2010. Vol. 256, No. 2. Р. 607–616. doi: 10.1148/radiol.10091218.

17. Zhang T., Chowdhury S., Lustig M., Vasanawala S.S., Ye J.C. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction // Journal of Magnetic Resonance Imaging. 2014. Vol. 40, No. 1. Р. 13–25. doi: 10.1002/jmri.24333.

18. Feng L., Benkert T., Block K.T., Sodickson D.K., Otazo R., Chandarana H. Compressed sensing for body MRI // Journal of Magnetic Resonance Imaging. 2017. Vol. 45, No. 4. Р. 966–987. doi: 10.1002/jmri.25547.

19. Candès E.J., Romberg J., Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information // IEEE Transactions on Information Theory. 2006. Vol. 52, No. 2. Р. 489–509. doi: 10.1109/TIT.2005.862083.

20. Candès E.J., Romberg J.K., Tao T. Stable signal recovery from incomplete and inaccurate measurements // Communications on Pure and Applied Mathematics. 2006. Vol. 59, No. 8. Р. 1207–1223. doi: 10.1002/cpa.20124.

21. Seo N., Park M.S., Han K. et al. Feasibility of 3D navigator-triggered magnetic resonance cholangiopancreatography with combined parallel imaging and compressed sensing reconstruction at 3T // Journal of Magnetic Resonance Imaging. 2017. Vol. 46, No. 4. Р. 1289–1297. doi: 10.1002/jmri.25672.

22. Schramm C., Eaton J., Ringe K.-I., Venkatesh S., Yamamura J. Recommendations on the use of magnetic resonance imaging in PSC: A position statement from the International PSC Study Group // Hepatology. 2017. Vol. 66, No. 5. Р. 1675–1688.

23. Rabiee A., Silveira M.G. Primary sclerosing cholangitis // Transl. Gastroenterol. Hepatol. 2021. Vol. 6, Р. 29. doi: 10.21037/tgh-20-266.

24. Boonstra K., Beuers U., Ponsioen C.Y. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review // J. Hepatol. 2012. Vol. 56, No. 5. Р. 1181–1188. doi: 10.1016/j.jhep.2011.10.025.

25. Weismuller T.J., Trivedi P.J., Bergquist A. et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis // Gastroenterology. 2017. Vol. 152, No. 8, Р. 1975–1984.e8. doi: 10.1053/j.gastro.2017.02.038.

26. Lunder A.K., Hov J.R., Borthne A. et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease // Gastroenterology. 2016. Vol. 151, No. 4. Р. 660–669.e4. doi: 10.1053/j.gastro.2016.06.021.

27. Grigoriadis A., Morsbach F., Voulgarakis N. et al. Inter-reader agreement of interpretation of radiological course of bile duct changes between serial follow-up magnetic resonance imaging/3D magnetic resonance cholangiopancreatography of patients with primary sclerosing cholangitis // Scand. J. Gastroenterol. 2020. Vol. 55, No. 3. Р. 311–317. doi:10.1080/00365521.2020.1720281.

28. Lee J.Y., Kim K.W., Park S.W. et al. Diagnostic accuracy of magnetic resonance cholangiopancreatography in patients with suspected biliary obstruction // World J. Gastroenterol. 2014. Vol. 20, No. 31. Р. 10928–10936. doi: 10.3748/wjg.v20.i31.10928.

29. Saini S. Imaging of the hepatobiliary tract // N. Engl. J. Med. 1997. Vol. 336, No. 26. Р. 1889–1894. doi:10.1056/NEJM199706263362607.

30. Baron R.L., Stanley R.J. Multidetector CT of the liver // Radiol. Clin. North Am. 2006. Vol. 44, No. 1. Р. 117–132. doi: 10.1016/j.rcl.2005.09.004.

31. Adamek H.E., Albert J.G., Breer H. et al. S3 guideline on cholangiopancreatography (CPG) // Z. Gastroenterol. 2019. Vol. 57, No. 10. Р. 1317–1357. doi: 10.1055/a-0962-2508.

32. Ward J., Naik K.S., Guthrie J.A. Magnetic resonance cholangiopancreatography (MRCP): a review // Clin. Radiol. 2000. Vol. 55, No. 3. Р. 177–186. doi:10.1053/crad.1999.0439.

33. Levy C., Dumont E., Liguory C. et al. Role of endoscopic ultrasound-guided fine needle aspiration in differentiating benign from malignant biliary strictures: a prospective series // Endoscopy. 2006. Vol. 38, No. 10. Р. 1003–1008. doi: 10.1055/s-2006-944832.

34. Xiao J., Zhang Y., Wang Y. et al. Artificial intelligence in magnetic resonance cholangiopancreatography: a review // J. Dig. Dis. 2022. Vol. 23, No. 11. Р. 1065–1073. doi: 10.1111/1751-2980.13201.

35. Tonolini M., Ravelli A., Villa C. et al. Urgent MRI with MR cholangiopancreatography (MRCP) of acute cholecystitis and related complications: diagnostic role and spectrum of imaging findings // Emerg. Radiol. 2012. Vol. 19, No. 5. Р. 341–348. doi:10.1007/s10140-012-1038-z.

36. Vidal B.P.C., Lahan-Martins D., Penachim T.J. et al. MR Cholangiopancreatography: What Every Radiology Resident Must Know // RadioGraphics. 2020. Vol. 40, No. 5. Р. 1263–1264. doi: 10.1148/rg.2020200030


Review

For citations:


Espanov A.A. Current challenges and prospects of magnetic resonance cholangiopancreatography: problems in clinical practice and theoretical approaches to their solution: a review. Diagnostic radiology and radiotherapy. 2025;16(1):47-56. (In Russ.) https://doi.org/10.22328/2079-5343-2025-16-1-47-56

Views: 148


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)