Preview

Diagnostic radiology and radiotherapy

Advanced search

Diffusion tensor imaging in the study of spinal tract degeneration after spinal cord injury: a prospective study

https://doi.org/10.22328/2079-5343-2025-16-1-66-73

Abstract

INTRODUCTION: Spinal cord injuries in children account for up to 10% of all injuries in children, but remain a significant problem, as they often lead to serious consequences, including disability. Traditional MRI does not allow detecting differences in undamaged parts of the spinal cord in either the acute or chronic period. Introduction of diffusion tensor imaging (DTI) into the protocol for examining damaged spinal cord allows detecting even minimal but significant microstructural abnormalities.

OBJECTIVE: Тo evaluate, using DTI, microstructural changes in the ascending and descending fibers of the cervical spinal cord above the level of injury in patients with spinal cord trauma at different periods after injury.

MATERIALS AND METHODS: The study included 39 children aged 12 to 18 years (mean age 14.3±1.8 years) with spinal cord injury below the level of the Th3 vertebra, including: 21 patients with complete spinal cord injury — grade A according to the ASIA classification (group A), 18 patients with incomplete spinal cord injury — grade B-D according to the ASIA classification (group B). The study was performed on an MRI scanner 3.0 T Philips Achieva dStream. The following DTI parameters were taken into account: FA, AD, MD, RD.

RESULTS: In the area of lateral corticospinal tract, a decrease in FA value and an increase in RD value for patients of group A compared to the control group during the recovery period were revealed. In the area of the dorsal funiculi, a decrease in FA values for patients of group A is observed already in the subacute period after injury.

CONCLUSION: DTI is a convenient tool for analyzing the post-traumatic spinal cord, since it allows not only to detect changes that are not visible with other research methods, but also to obtain quantitative characteristics, which allows on their basis to form objective criteria for assessing state of spinal cord, which can then be used to monitor the treatment and rehabilitation of children with spinal cord injury.

About the Authors

O. V. Bozhko
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Olga V. Bozhko  — Cand. of Sci. (Med.), Senior Researcher, Department of Radiation Diagnostic Methods

119180, Moscow, st. B. Polyanka 22



M. V. Ublinskiy
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Maxim V. Ublinsky — Cand. of Sci. (Biol.), Leading Researcher, Department of Radiation Diagnostic Methods

119180, Moscow, st. Bolshaya Polyanka, 22



T. A. Akhadov
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Tolibdzhon A. Akhadov  — Dr. of Sci. (Med.), Professor, Head of the Department of Radiation Diagnostic Methods

Moscow, Kargopolskaya St. 10



E. V. Voronkova
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Elena V. Voronkova — research fellow

 119180, Moscow, st. B. Polyanka, 22



I. N. Novoselova
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Irina N. Novoselova — Dr. of Sci. (Med.), Head of the Physical Rehabilitation Department

119180, Moscow, st. Bolshaya Polyanka, 22



I. V. Ponina
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Irina V. Ponina — pediatrician, Rehabilitation Department

119180, Moscow, st. Bolshaya Polyanka, 22



A. A. Kobzeva
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Anna A. Kobzeva  — radiologist, department of Radiation diagnostic methods

119180, Moscow, Bolshaya Polyanka St., 22



I. A. Melnikov
Clinical and Research Institute of Emergency Pediatric Surgery and Traumа-Dr Roshal’s Clinic
Russian Federation

Ilya A. Melnikov — Cand. of Sci. (Biol.), Head of CT and MRI Department

119180, Moscow, Bolshaya Polyanka St., 22



References

1. Kim C., Vassilyadi M., Forbes J.K., Moroz N.W., Camacho A., Moroz P.J. Traumatic spinal injuries in children at a single level 1 pediatric trauma centre: report of a 23-year experience // Can. J. Surg. 2016. Vol. 59, No. 3. P. 205–212. doi: 10.1503/cjs.014515.

2. Zaletina A.V., Vissarionov S.V., Baindurashvili A.G., Kokushin D.N., Solovyova K.S. Damage to the spine and spinal cord in children. International Journal of Applied and Fundamental Research, 2017, Vol. 12, No. 1, рр. 69–73 (In Russ.). doi: 10.17513/mjpfi.11965.

3. Ponina I.V., Novoselova I.N., Valiullina S.A., Akhadov T.A., Bozhko O.V., Lukyanov V.I., Popova O.V. Features of the nutritional status of children with spinal cord injury in the early stages of recovery. Russian pediatric journal, 2022, Vol. 25, No. 5, pp. 333–336 (In Russ.). doi: 10.46563/1560-9561-2022-25-5-333-336.

4. Beirowski B., Adalbert R., Wagner D., Grumme D.S., Addicks K., Ribchester R.R. et al. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves // BMC Neurosci. 2005. Vol. 6. P. 6. doi: 10.1186/1471-2202-6-6.

5. Buss A., Brook G.A., Kakulas B., Martin D., Franzen R., Schoenen J. et al. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord // Brain. 2004. Vol. 127, No. 1. P. 34–44. doi: 10.1093/brain/awh001.

6. Bozhko O.V., Ublinsky M.V., Akhadov T.A., Voronkova E.V., Kobzeva A.A., Melnikov I.A. Diffusion tensor imaging of the spinal cord in healthy children. Russian Pediatric Journal, 2024, Vol. 27, No. 5, pp. 350–355 (In Russ.). doi: 10.46563/1560-9561-2024-27-5-350-355.

7. Dong Q., Welsh R.C., Chenevert T.L., Carlos R.C., Maly-Sundgren P., Gomez-Hassan D.M. et al. Clinical applications of diffusion tensor imaging // J. Magn Reson Imaging. 2004. Vol. 19, No. 1. P. 6–18. doi: 10.1002/jmri.10424.

8. Akhadov T.A., Ublinsky M.V., Kanshina D.S., Bozhko O.V., Melnikov I.A., Gachok I.V. et al. Diffusion magnetic resonance imaging for assessing the state of the spinal brain: physical and technical fundamentals, clinical experience: textbook. Moscow: IP Gorsheneva A.V., 2024. 86 p. (In Russ.). ISBN 978-5-6044538-5-8.

9. Fiani B., Noblett C., Nanney J., Doan T., Pennington E., Jarrah R. et al. Diffusion tensor imaging of the spinal cord status post trauma // Surg. Neurol. Int. 2020. Vol. 11. P. 276. doi: 10.25259/SNI_495_2020.

10. Mulcahey M.J., Samdani A., Gaughan J., Barakat N., Faro S., Betz R.R. et al. Diffusion tensor imaging in pediatric spinal cord injury: Preliminary examination of reliability and clinical correlation // Spine (Phila Pa 1976). 2012. Vol. 37, No. 13. P. 797. doi: 10.1097/BRS.0b013e3182470a08.

11. Mulcahey M.J., Samdani A.F., Gaughan J.P., Barakat N., Faro S., Shah P. et al. Diagnostic accuracy of diffusion tensor imaging for pediatric cervical spinal cord injury // Spinal Cord. 2013. Vol. 51, No. 7. P. 532–537. doi: 10.1038/sc.2013.36.

12. Krisa L., Middleton D.M., Saksena S, Faro S.H., Leiby B.E., Mohamed F.B. et al. Clinical Utility of Diffusion Tensor Imaging as a Biomarker to Identify Microstructural Changes in Pediatric Spinal Cord Injury // Top Spinal. Cord Inj. Rehabil. 2022. Vol. 28, No. 2. P. 1–12. doi: 10.46292/sci21–00048.

13. Roberts T.T., Leonard G.R., Cepela D.J. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale // Clin. Orthop. Relat. Res. 2017. Vol. 475, No. 5. P. 1499–1504. doi: 10.1007/s11999-016-5133-4.

14. Wilm B.J., Gamper U., Henning A., Pruessmann K.P., Kollias S.S., Boesiger P. Diffusion-weighted imaging of the entire spinal cord // NMR Biomed. 2009. Vol. 22, No. 2. P. 174–181. doi: 10.1002/nbm.1298.

15. De Leener B., Lévy S., Dupont S.M., Fonov V.S., Stikov N., Louis Collins D. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data // Neuroimage. 2017. Vol. 145. Pt A. P. 24–43. doi: 10.1016/j.neuroimage.2016.10.009.

16. David G., Pfyffer D., Vallotton K., Pfender N., Thompson A., Weiskopf N. et al. Longitudinal changes of spinal cord grey and white matter following spinal cord injury // J. Neurol Neurosurg Psychiatry. 2021. Vol. 92, No. 11. P. 1222–1230. doi: 10.1136/jnnp-2021-326337.

17. Freund P., Seif M., Weiskopf N., Friston K., Fehlings M.G., Thompson A.J. et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers // Lancet Neurol. 2019. Vol. 18. № 12. P. 1123–1135. doi: 10.1016/S1474-4422(19)30138-3.

18. Seif M., Ziegler G., Freund P. Progressive Ventricles Enlargement and Cerebrospinal Fluid Volume Increases as a Marker of Neurodegeneration in Patients with Spinal Cord Injury: A Longitudinal Magnetic Resonance Imaging Study. // J. Neurotrauma. 2018. Vol. 35, No. 24. P. 2941–2946. doi: 10.1089/neu.2017.5522.

19. Fissel J.A., Farah M.H. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve // J. Neuroinflammation. 2021. Vol. 18, No. 1. P. 71. doi: 10.1186/s12974-021-02121-2.

20. Tian R., Zhou Y., Ren Y., Zhang Y., Tang W. Wallerian degeneration: From mechanism to disease to imaging. // Heliyon. 2024. Vol. 11, No. 1. e40729. doi: 10.1016/j.heliyon.2024.e40729.

21. Fischer T., Stern C., Freund P., Schubert M., Sutter R. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study // Eur. Radiol. 2021. Vol. 31, No. 5. P. 2923–2932. doi: 10.1007/s00330-020-07388-2.

22. Poulen G., Perrin F.E. Advances in spinal cord injury: insights from non-human primates // Neural Regen Res. 2024. Vol. 19, No. 11. P. 2354–2364. doi: 10.4103/NRR.NRR-D-23-01505.

23. Grumbles R.M., Thomas C.K. Motoneuron Death after Human Spinal Cord Injury // J. Neurotrauma. 2017. Vol. 34, No. 3. P. 581–590. doi: 10.1089/neu.2015.4374.

24. Hill CE. A view from the ending: Axonal dieback and regeneration following SCI // Neurosci. Lett. 2017. Vol. 652. P. 11–24. doi: 10.1016/j.neulet.2016.11.002.

25. Beirowski B., Nógrádi A., Babetto E., Garcia-Alias G., Coleman M.P. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration // J. Neuropathol. Exp. Neurol. 2010. Vol. 69, No. 5. P. 455–472. doi: 10.1097/NEN.0b013e3181da84db.

26. DeFrancesco-Lisowitz A., Lindborg J.A., Niemi J.P., Zigmond R.E. The neuroimmunology of degeneration and regeneration in the peripheral nervous system // Neuroscience. 2015. Vol. 302. P. 174–203. doi: 10.1016/j.neuroscience.2014.09.027.

27. Schading S., Emmenegger T.M., Freund P. Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers // Curr. Neurol. Neurosci. Rep. 2021. Vol. 21, No. 9. P. 49. doi: 10.1007/s11910-021-01134-x.

28. Guleria S., Gupta R.K., Saksena S., Chandra A., Srivastava R.N., Husain M. et al. Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging // J. Neurosci Res. 2008. Vol. 86, No. 10. P. 2271–2280. doi: 10.1002/jnr.21664.

29. Koskinen E., Brander A., Hakulinen U., Luoto T., Helminen M., Ylinen A. et al. Assessing the state of chronic spinal cord injury using diffusion tensor imaging // J. Neurotrauma. 2013. Vol. 30, No. 18. P. 1587–1595. doi: 10.1089/neu.2013.2943.


Review

For citations:


Bozhko O.V., Ublinskiy M.V., Akhadov T.A., Voronkova E.V., Novoselova I.N., Ponina I.V., Kobzeva A.A., Melnikov I.A. Diffusion tensor imaging in the study of spinal tract degeneration after spinal cord injury: a prospective study. Diagnostic radiology and radiotherapy. 2025;16(1):66-73. (In Russ.) https://doi.org/10.22328/2079-5343-2025-16-1-66-73

Views: 197


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)