Dosimetric aspects of vessel-sparing stereotactic radiation therapy for prostate cancer: prospective simulation study
https://doi.org/10.22328/2079-5343-2025-16-1-95-106
Abstract
INTRODUCTION: Тhe development of new methods of radical treatment of prostate cancer (PCa) aimed at maintaining a high quality of life is the most important task of modern oncourology. Radiation therapy with a dose reduction to the area of critical vascular erectile structures is one of them.
OBJECTIVE: Сompare different approaches for «vessel-sparing» stereotactic radiation therapy (VS-SRT) PCa.
MATERIALS AND METHODS: Тhe study included 20 patients with histologically confirmed PCa of low and intermediate risk of recurrence (NCCN). SRT was planed at five fractions of 7.25 Gy. During planning we ad to the standard critical organs, vascular structures that are responsible for erectile function (ErOAR)): penile bulb (PB), crura of the cavernous bodies (CCB) and internal pudendal arteries (IPA)). For each patient, four dosimetric plans (DP) were calculated: «vessel-sparing» (DP-VS); standard (DP-S); «vessel-sparing» plan calculated in the formation of the generally accepted anisotropic indent of 5 mm for the planned volume of irradiation and a step towards the rectum — 3 mm (DP-5/3); «vessel-sparing» plan for irradiation using a 0.5-centimeter multi-life collimator (DP-0.5). All dosimetry plans, with the exception of DP-0.5, were generated for a linear accelerator with a 0.25 cm multi-leaf collimator.
RESULTS: Аll dosimetry plans, were cherecterized by exellent target coverage abd meet the prescribed limits for the critical organs. Most efficient sparing of ErOAR was achieved in DP-VS. The advantages of DP-VS in comparison with DP-S was significant reduction (30%) of D2% for CCB (IPA) (р0.05).
DISCUSSION: Тhe obtained results indicate that VS-SRT is feasible in the vast majority of patients suffering from PCa. A significant reduction in the dose delivered to the ErOAR can be achieved at most linear electron accelerators equipped with modern multi-leaf collimators.
CONCLUSION: The greatest contribution to the reduction of radiation dose to ErOAR in VS-SRT PC is made by the reduction of standard PTV, while the width of the collimator leaf does not have a significant effect on the dose priscribed to this region.
About the Authors
R. V. NovikovRussian Federation
Roman V. Novikov — Dr. of Sci. (Med.), leading researcher, scientific department of radiation oncology and nuclear medicine; professor of the department of urology
197758, Pesochny settlement, St. Petersburg, Leningradskaya st., 68; 194044, St. Petersburg, Akademika Lebedeva str., 6;
G. A. Liasovich
Russian Federation
Georgy A. Lyasovich — urologist, surgical department, clinical hospital, medical unit of the ministry of internal affairs
194291, St. Petersburg, Kultury Ave., 2
E. S. Bykova
Russian Federation
Ekaterina S. Bykova — medical physicist of the department of radiotherapy
197758, Pesochny Settlement, St. Petersburg, Leningradskaya str. 68
O. I. Ponomareva
Russian Federation
Olga I. Ponomareva — radiologist of the department of radiotherapy
197758, Pesochny Settlement, St. Petersburg, Leningradskaya str. 68
V. K. Karandashev
Russian Federation
Vasily K. Karandashov — head of the department of oncourology
194044, St. Petersburg, Akademika Lebedeva str., 6
A. I. Arsenyev
Russian Federation
Andrey I. Arsenyev — Dr. of Sci. (Med.), professor, radiotherapist of the department of radiotherapy
197758, Pesochny Settlement, St. Petersburg, Leningradskaya str. 68
S. N. Novikov
Russian Federation
Sergey N. Novikov — Dr. of Sci. (Med.), professor, honored doctor of the russian federation, leading researcher, head of the department of radiotherapy, head of the scientific department of radiation oncology and nuclear medicine
197758, Pesochny Settlement, St. Petersburg, Leningradskaya str. 68
V. V. Protoshchak
Russian Federation
Vladimir V. Protoshchak — Dr. of Sci. (Med.), professor, head of the department of urology
194044, St. Petersburg, Akademika Lebedeva str., 6
References
1. Gaither T.W., Awad M.A., Osterberg E.C. et al. The natural history of erectile dysfunction after prostatic radiotherapy: a systematic review and meta-analysis // J. Sex. Med. 2017. Vol. 14, No. 9. P. 1071–1078. doi: https://doi.org/10.1016/j.jsxm.2017.07.010.
2. Mahmood J., Shamah A.A., Creed T.M. et al. Radiation-induced erectile dysfunction: Recent advances and future directions // Adv. Radiat. Oncol. 2016. Vol. 1, No. 3. P. 161–169. doi: https://doi.org/10.1016/j.adro.2016.05. 003.
3. McLaughlin P.W., Narayana V., Meirovitz A. et al. Vessel-sparing prostate radiotherapy: dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 61, No. 1. P. 20–31. doi: https://doi.org/10.1016/j.ijrobp.2004.04.070.
4. Spratt D.E., Lee J.Y., Dess R.T. et al. Vessel-sparing radiotherapy for localized prostate cancer to preserve erectile function: a single-arm phase 2 trial // Eur. Urol. 2017. Vol. 72, No. 4. P. 617–624. doi: https://doi.org/10.1016/j.eururo.2017.02.007.
5. Samlali H. Udrescu C., Lapierre A. et al. Prospective evaluation of a specific technique of sexual function preservation in external beam radiotherapy for prostate cancer // Br. J. Radiol. 2017. Vol. 90, No. 1078. 20160877. doi: https://doi.org/10.1259/bjr.20160877.
6. Jackson W.C., Silva J., Hartman H.E. et al. Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta-analysis of over 6,000 patients treated on prospective studies // Int. J. Radiat. Oncol. Biol. Phys. 2019. Vol. 104, No. 4. P. 778–779. doi: https://doi.org/10.1016/j.ijrobp.2019.03.051.
7. Jaccarda M., Lamannaa G., Dubouloza A. et al. Dose optimization and endorectal balloon for internal pudendal arteries sparing in prostate SBRT // Med. Phys. 2019. Vol. 61, No. 1. P. 28–32. doi: https://doi.org/10.1016/j.ejmp.2019.04.008.
8. Ciabatti S., Ntreta M., Buwenge M. et al. Dominant intraprostatic lesion boosting in sexual-sparing radiotherapy of prostate cancer: a planning feasibility study // Med. Dosim. 2019. Vol. 44. P. 356–364. doi: https://doi.org/10.1016/j.meddos.2019.01.008.
9. Leiker A.J., Rezaeian N.H., Laine A.M. et al. Prostate cancer neurovascular element sparing with stereotactic ablative radiation therapy (SAbR): a pilot dosimetric study for the POTEN-C Trial // Int. J. Radiat. Oncol. Biol. Phys. 2018. Vol. 102, No. 3. P. e125. doi: https://doi.org/10.1016/j.ijrobp.2018.07.335.
10. Kanaev S.V., Novikov S.N., Melnik Yu.S. et al. Methodology of stereotactic radiation therapy for prostate cancer. Oncology Issues, 2017, Vol. 63, No 2, рр. 287–293 (In Russ.). doi: https://doi.org/10.37469/0507-3758-2017-63-2-287-293.
11. Lukka H.R., Pugh S.L., Bruner D.W. et al. Patient reported outcomes in NRG oncology RTOG 0938, evaluating two ultrahypofractionated regimens for prostate cancer // Int. J. Radiat. Oncol. Biol. Phys. 2018. Vol. 102, No 2. P. 287–95. doi: https://doi.org/10.1016/j.ijrobp.2018.06.008.
12. Zaorsky N.G., Yu J.B., McBride S.M. et al. Prostate cancer radiotherapy recommendations in response to COVID-19 // Adv. Radiat. Oncol. 2020. Online ahead of print. PMID: 32292839. doi: https://doi.org/10.1016/j.adro.2020.03.010.
13. Roach M. III, Nam J., Gagliard G. et al. Radiation dose–volume effects and the penile bulb // Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 76, No. 3. P. 130–134. doi: https://doi.org/10.1016/j.ijrobp.2009.04.094.
14. Rasmusson E., Gunnlaugsson A., Wieslander E. et al. Erectile dysfunction and absorbed dose to penile base structures in a randomized trial comparing ultrahypofractionated and conventionally fractionated radiation therapy for prostate cancer // Int. J. Radiat. Oncol. Biol. Phys. 2020. Vol. 107, No 1. P. 143–151. doi: https://doi.org/10.1016/j.ijrobp.2020.01.022.
15. Murray J., Gulliford S., Griffin C. et al. Evaluation of erectile potency and radiation dose to the penile bulb using image guided radiotherapy in the CHHiP trial // Clin. Transl. Radiat. Oncol. 2019. Vol. 21. P. 77–84. doi: https://doi.org/10.1016/j.ctro.2019.12.006.
16. Tøndel H., Lund J.Å., Lydersen S. et al. Dose to penile bulb is not associated with erectile dysfunction 18 months post radiotherapy: A secondary analysis of a randomized trial // Clin. Transl. Radiat. Oncol. 2018. Vol. 13. P. 50–56. doi: https://doi.org/10.1016/j.ctro.2018.09.006.
17. Zhang E., Ruth K.J., Buyyounouski M.K. et al. Long-term results of a phase 3 randomized prospective trial of erectile tissue-sparing intensity-modulated radiation therapy for men with clinically localized prostate cancer // Int. J. Radiat. Oncol. Biol. Phys. 2023. Vol. 115, No 5. P. 1074–1084. doi: https://doi.org/10.1016/j.ijrobp.2022.12.008.
18. Novikov R.V., Ponomareva O.I., Litinskiy S.S., Novikov S.N. Anatomical and topographic justification of the «vaso-sparing» radiation therapy of prostate cancer. Experimental and clinical urology, 2020, Vol. 2, рр. 84–91 (In Russ.). doi: https://doi.org/10.29188/2222-8543-2020-12-2-84-91.
19. Böckelmann F., Hammon M., Lettmaier S. et al. Penile bulb sparing in prostate cancer radiotherapy: dose analysis of an in-house MRI system to improve contouring // Strahlenther Onkol. 2019. Vol. 195, No. 2. P. 153–163. doi: https://doi.org/10.1007/s00066-018-1377-0.
20. Achard V., Zilli T., Lamanna G. et al. Urethra-sparing prostate cancer stereotactic body radiotherapy: sexual function and radiation dose to the penile bulb, the crura, and the internal pudendal arteries from a randomized phase 2 trial // Int. J. Radiat. Oncol. Biol. Phys. 2023. S0360–3016(23)08307–4. doi: https://doi.org/10.1016/j.ijrobp.2023.12.037.
21. Le Guevelou J., Sargos P., Ferretti L. et al. Sexual structure sparing for prostate cancer radiotherapy: a systematic review // Eur. Urol. Oncol. 2023. S2588– 9311(23)00163–3. doi: https://doi.org/10.1016/j.euo.2023.08.003.
22. Novikov R.V., Novikov S.N., Protoshchak V.V. et al. Radiationinduced erectile dysfunction in patients with prostate cancer: a modern view of pathogenesis. Bulletin of Radiology and Radiology, 2021, Vol. 102, No 1, рр. 66–74 (In Russ.). doi: https://doi.org/10.20862/0042-4676-2021-102-1-66-74.
23. Li T., Yuan L., Lee W. et al. SU-E-T-406: Online image-guidance for prostate SBRT: dosimetric benefits and margin analysis // Med. Phys. 2012. Vol. 39, No 6. P. 3798. doi: https://doi.org/10.1118/1.4735495.
24. Kisivan K., Antal G., Gulyban A. et al. Triggered imaging with Auto Beam Hold and pre-/posttreatment CBCT during prostate SABR: analysis of time efficiency, target coverage, and normal volume changes // Pract. Radiat. Oncol. 2021. Vol. 11, No 2. E 210-e 218. doi: https://doi.org/10.1016/j.prro.2020.04.014.
25. Wu Q.J., Wang Z., Kirkpatrick J.P. et al. Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra- and extracranial lesions // Radiat. Oncol. 2009. Vol. 4, No 3. doi: https://doi.org/10.1186/1748-717X-4-3.
26. Chang J., Yenice K.M., Jiang K. et al. Effect of MLC leaf width and PTV margin on the treatment planning of intensity-modulated stereotactic radiosurgery (IMSRS) or radiotherapy (IMSRT) // Med. Dosim. 2009. Vol. 34, No. 2. P. 110–116. doi: https://doi.org/10.1016/j.meddos.2008.06.002.
27. Abisheva Z., Floyd S.R., Salama J.K. et al. The effect of MLC leaf width in single-isocenter multi-target radiosurgery with volumetric modulated arc therapy // J. Radiosurg. SBRT. 2019. Vol. 6, No 2. P. 131–138. doi: https://doi.org/10.1016/j.meddos.2008.06.002.
Review
For citations:
Novikov R.V., Liasovich G.A., Bykova E.S., Ponomareva O.I., Karandashev V.K., Arsenyev A.I., Novikov S.N., Protoshchak V.V. Dosimetric aspects of vessel-sparing stereotactic radiation therapy for prostate cancer: prospective simulation study. Diagnostic radiology and radiotherapy. 2025;16(1):95-106. (In Russ.) https://doi.org/10.22328/2079-5343-2025-16-1-95-106