Preview

Diagnostic radiology and radiotherapy

Advanced search

Modern methods of radiological diagnosis of osteoporosis. Part 1: X-ray absorptiometry, quantitative CT, panoramic tomography, bone ultrasonometry: a review

https://doi.org/10.22328/2079-5343-2025-16-2-29-39

Abstract

INTRODUCTION: By 2050, approximately 22% of the world’s population is expected to be over 60 years of age. Increasing life expectancy leads to an increase in the prevalence of chronic non-communicable diseases, including osteoporosis. Osteoporosis is the most common cause of low-energy bone fractures, thereby reducing life expectancy and quality of life.

OBJECTIVE: To present up-to-date data on the methods of radiodiagnostic diagnosis for osteoporosis using X-ray absorptiometry, quantitative computed tomography, panoramic dental tomography and bone ultrasonometry.

MATERIAL AND METHODS: The research and analysis was conducted to search for scientific publications and clinical recommendations in information-analytical systems eLIBRARY.RU and PubMed for 2005–2024 by the following keywords: osteoporosis, quantitative computed tomography, osteodensitometry, absorptiometry, dual-energy x-ray absorptiometry, panoramic tomography, bone ultrasonometry, bone mineral density.

RESULTS: 454 articles was analyzed, 27 of which were used to compile the review. Data on diagnostic sensitivity, specificity, and calculated indices of each method are presented.

CONCLUSION: Each of the radiation methods described in this review has its place and development prospects in the diagnosis of osteoporosis. The analysis of scientific data on the described methods shows a continuous development and an increasing interest in each of the methods.

About the Authors

V. S. Blinov
Ural State Medical University; Verkhnepyshminskaya Central City Hospital named after P. D. Borodin
Russian Federation

Vladislav S. Blinov  — Cand. of Sci. (Med.), Head of the X-ray diagnostic department of State Autonomous Healthcare Institution of the Sverdlovsk Region; Assistant at the Department of Oncology and Radiologic Diagnostics

624090, Russia, Verkhnyaya Pyshma, st. Chaykovskogo, 32; 620028, Ekaterinburg, st. Repina, 3



Yu. S. Kitaeva
Ural State Medical University
Russian Federation

Yulia S. Kitaeva — Cand. of Sci. (Med.), Assistant of the Department of Propaedeutics of Internal Diseases

620028, Ekaterinburg, st. Repina



E. A. Praskurnichiy
Russian National Research Medical University named after. N. I. Pirogov
Russian Federation

Evgeniy A. Praskurnichiy — Dr. of Sci. (Med.), Head of Department of Therapy

 117997, Moscow, st. Ostrovityanova, 1



M. A. Chibisova
North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Marina A. Chibisova — Dr. of Sci. (Med.), Professor, Professor of the Department of Clinical Dentistry, Professor of the Department of Pediatric and Therapeutic Dentistry named after Yu. A. Fedorov

191015, St. Petersburg, st. Kirochnaya, 41



References

1. Nizovtsova L.A., Morozov S.P., Petryaykin A.V., Bosin V.Yu., Sergunova K.A., Vladzimirskiy A.V., Shantarevich M.Yu. On the unification of bone densitometry and interpretation of its results. Journal of radiology and nuclear medicine, 2018, Vol. 99, No. 3, pp. 158–163 (In Russ.). doi: https://doi.org/10.20862/0042-4676-2018-99-3-158-163.

2. El-Desouki M., Al-Nuaim A., Al-Mutib M.N. et al. Bone mineral content and bone mineral density values measured by single photon absorptiometry among healthy Saudi population // Ann. Saudi. Med. 1991. Vol. 11, No. 6. Р. 620–624. doi: https://doi:10.5144/0256-4947.1991.620.

3. Sabatier J.P., Guaydier-Souquieres G. Noninvasive methods of bone-mass measurement // Clin. Rheumatol. 1989. Vol. 8, No. 2. Р. 41–45. doi: https://doi:10.1007/BF02207232.

4. Chun K.J. Bone densitometry // Semin. Nucl. Med. 2011. Vol. 41, No. 3. Р. 220–288. doi: https://doi:10.1053/j.semnuclmed.2010.12.002.

5. Burr D.B., Allen M.R. Basic and Applied Bone Biology. Chapter 5 — Skeletal Imaging // Academic Press. 2014. Р. 93–113. doi: https://doi.org/10.1016/B978-0-12-416015-6.00005-8.

6. Belaya Z.E., Belova K.Yu., Biryukova E.V., Dedov I.I., Dzeranova L.K., Drapkina O.M. et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases, 2021, Vol. 24, No. 2, pp. 4–47 (In Russ.). doi: https://doi:10.14341/osteo12930.

7. Shuhart C.R., Yeap S.S., Anderson P.A. et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics // J. Clin. Densitom. 2019. Vol. 22, No. 4. P. 453–471. doi: https://doi:10.1016/j.jocd.2019.07.001.

8. Toombs R.J., Ducher G., Shepherd J.A., De Souza M.J. The impact of recent technological advances on the trueness and precision of DXA to assess body composition // Obesity (Silver Spring). 2012. Vol. 20, No.1. Р. 30–39. doi: https://doi:10.1038/oby.2011.211.

9. Messina C., Albano D., Gitto S. et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools // Quant. Imaging. Med. Surg. 2020. Vol. 10, No. 8. Р. 1687–1698. doi: https://doi:10.21037/qims.2020.03.02.

10. Novikov V.E., Skripnikova I.A., Murashko L.M., Abirova E.S. Dual-energy X-ray absorptiometry in clinical trials and real-world practice. Reproducibility and quality issues. Osteoporosis and Bone Diseases, 2014, Vol. 17, No. 1, pp. 39–42. (In Russ.). https://doi.org/10.14341/osteo2014139-42.

11. Petraikin A.V., Smorchkova A.K., Kudryavtsev N.D., Sergunova K.A. et al. Comparison of two asynchronous QCT methods. Medical Visualization, 2020, Vol. 24, No. 4, pp. 108–118 (In Russ.). doi: https://doi.org/10.24835/1607–0763–2020–4-108–118.

12. Petraikin A.V., Skripnikova I.A. Quantitative Computed Tomography, modern data. Review. Medical Visualization, 2021, Vol. 25, No. 4, pp. 134–146 (In Russ.). doi: https://doi.org/10.24835/1607-0763-1049.

13. Pickhardt P.J., Pooler B.D., Lauder T. et al. Opportunistic Screening for Osteoporosis Using Abdominal Computed Tomography Scans Obtained for Other Indications // Ann. Intern. Med. 2013. Vol. 158, No. 8. Р. 588–595. doi: 10.7326/0003-4819-158-8-201304160-00003.

14. Alacreu E., Moratal D., Arana E. Opportunistic screening for osteoporosis by routine CT in Europe // Osteoporos Int. 2017. Vol. 28, No. 3. Р. 983–990. doi: https://doi.org/10.1007/s00198-016-3804-3.

15. Chibisova M.A., Batukov N.M. Methods of X-ray examination and modern radiation diagnostics used in dentistry. Institut stomatologii, 2020, Vol. 3, No. 88, pp. 24–33 (In Russ.).

16. Calciolari E., Donos N., Park J.C. et al. Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis // J. Dent. Res. 2015. Vol. 94, No. 3. Р. 17S–27S. doi: https://doi:10.1177/0022034514554949.

17. Ledgerton D., Horner K., Devlin H., Worthington H. Radiomorphometric indices of the mandible in a British female population // Dentomaxillofac. Radiol. 1999. Vol. 28, No. 3. Р. 173–181.

18. Ortman L.F., Hausmann E., Dunford R.G. Skeletal osteopenia and residual ridge resorption // J. Prosthet. Dent. 1989. Vol. 61, No. 3. Р. 321–325.

19. Yarulina Z.I., Sedov Yu.G. Algoritm of the mandible radiomorphometricindices evaluation according to the cone-beam computered tomography. Diagnostic radiology and radiotherapy, 2014, Vol. 4, No. 5, рр. 115–122 (In Russ.)

20. Taguchi A., Asano A., Ohtsuka M. et al. Observer performance in diagnosing osteoporosis by dental panoramic radiographs: results from the osteoporosis screening project in dentistry (OSPD) // Bone. 2008. Vol. 43, No. 1. Р. 209–213. doi: https://doi:10.1016/j.bone.2008.03.014.

21. Mahl C.R., Licks R., Fontanella V.R. Comparison of morphometric indices obtained from dental panoramic radiography for identifying individuals with osteoporosis/osteopenia // Radiol. Bras. 2008. Vol. 41, No. 3. Р. 183–187.

22. Drozdzowska B., Pluskiewicz W., Tarnawska B. Panoramic-based mandibular indices in relation to mandibular bone mineral density and skeletal status assessed by dual energy X-ray absorptiometry and quantitative ultrasound // Dentomaxillofacial Radiol. 2002. No. 31. Р. 361–367. doi: https://doi:10.1038/sj.dmfr.4600729.

23. Pfeiffer P., Bewersdorf S., Schmage P. The effect of changes in head position on enlargement of structures during panoramic radiography // Int. J. Oral Maxillofac. Implants. 2012. Vol. 27, No. 1. pp. 55–63.

24. Teterina A., Niratisairak S., Morseth B., Bolstad N. Diagnostic efficacy of radiomorphometric indices for predicting osteoporosis in a Norwegian population in the Tromso Study: Tromos7 // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023. Vol. 135, No. 3. Р. 444–455. doi: https://doi:10.1016/j.oooo.2022.10.039.

25. Adams J.E. Advances in bone imaging for osteoporosis // Nat. Rev. Endocrinol. 2013. No. 9. Р. 28–42. doi: https://doi:10.1038/nrendo.2012.217.

26. ChiaChi Yen, WeiChun Lin, TzuHaoWang et al. Prescreening for osteoporosis with calcaneus quantitative ultrasound and dualenergy Xray absorptiometry bone density // Scientifc Reports. 2021. No. 11. Р. 15709. doi: https://doi.org/10.1038/s41598-021-95261-7.

27. Cetin A., Erturk H., Celiker R. et al. The role of quantitative ultrasound in predicting osteoporosis defined by dual X-ray absorptiometry // Rheumatol. Int. 2001. Vol. 20, No. 2. Р. 55–59. doi: https://doi:10.1007/pl00006857.


Review

For citations:


Blinov V.S., Kitaeva Yu.S., Praskurnichiy E.A., Chibisova M.A. Modern methods of radiological diagnosis of osteoporosis. Part 1: X-ray absorptiometry, quantitative CT, panoramic tomography, bone ultrasonometry: a review. Diagnostic radiology and radiotherapy. 2025;16(2):29-39. (In Russ.) https://doi.org/10.22328/2079-5343-2025-16-2-29-39

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)