CT-PERFUSION POSSIBILITIES IN DETECTION AND EVALUATION CASES OF PSEUDOPROGRESSION AFTER COMBINED TREATMENT OF BRAIN GLIOMAS
Abstract
Particular problem in the diagnosis of the results of the combined treatment of brain gliomas is the evaluation of possible radiation lesions. The importance of proper diagnosis of changes in the brain tissue after gliomas combined treatment is difficult to overestimate, because this information affects the further tactics of patients. Available modern methods of diagnostic radiology reliably detect cases of radiation lesion of the brain tissue, but not enough data in the literature about semiotics and its variation over time for focal radiation lesions, various concepts of pseudoprogression and radiation necrosis were found. The aim of this publication was to clarify radiological patterns of pseudoprogression by perfusion CT, revealing its differences from radiation necrosis. This article describes the different variants of pseudoprogression and its flowing, while it is determined that local radiation injuries after combined treatment may develop in the area of perioperative ischemia.
About the Authors
M. A. ZhuravlevаRussian Federation
Т. N. Trofimova
Russian Federation
A. S. Shershever
Russian Federation
References
1. Скворцова Т. Ю., Бродская З. Л., Савинцева Ж. И., Гурчин А. Ф. Современные проблемы мониторинга лечения церебральных глиом и возможности повышения точности диагностики при помощи ПЭТ с [11С]метионином // Лучевая диагностика и терапия.— 2014.— Т. 5, № 2.— С. 5–16.
2. Chen Y., Trotty A., Coleman C. et al. Adverse event reporting and developments in radiation biology after normal tissue injury: International Atomic Energy Agency consultation // Int. J. Radiat. Oncol. Biol. Phys.— 2006.— Vol. 64, Iss. 5.— P. 1442–1452.
3. Fajardo L.-G., Berthrong M., Anderson R. E. Radiation pathology.— New-York: Oxford University Press, 2001.— 472 p.
4. McDonald D. R., Cascino T. L., Schold S. C. et al. Response criteria for phase II studies of supratentorial malignant glioma // J. Clin. Oncol.— 1990.— Vol. 8, № 7.— P. 1277–1280.
5. Brandes A. A. et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology // NeuroOncol.— 2008.— Vol. 10.— P. 361–367.
6. Castel J. C., Caille J. M. Imaging of irradiated brain tumors: value of magnetic resonance imaging // J. Neuradiol.— 1989.— Vol. 16.— P. 81–132.
7. Jain R., Narang J., Sundgren P. M. et al. Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging // J. Neurooncol.— 2010.— Vol. 100 (1).— P. 17–29.
8. Mullins M. E., Barest G. D., Schaefer P. W. et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis // Am. J. Neuroradiol.— 2005.— Vol. 26.— P. 1967–1972.
9. Wen P. Y., Macdonald D. R., Reardon D. A. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group // J. Clin. Oncol.— 2010.— Vol. 28.— P. 1963–1972.
10. Долгушин М. Б., Пронин И. Н., Корниенко В. Н. Перфузионная компьютерная томография в динамической оценке эффективности лучевой терапии при вторичном опухолевом поражении головного мозга // Вестник РОНЦ им. Блохина РАМН.— 2008.— Т. 19, № 4.— С. 36–46.
11. Alexiou G. A., Tsiouris S., Kyritsis A. et al. Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities // J. Neorooncol.— 2009.— Vol. 95.— P. 1–11.
12. Brandsma D., van den Bent M. J. Pseudoprogression and pseudoresponse in the treatment of gliomas // Curr. Opin. Neurol.— 2009.— Vol. 22, № 6.— P. 633–638.
13. Huang A. et al. Clinical application of perfusion computed tomography in neuronesurgery // J. Neurosurg.— 2014.— Vol. 120.— P. 473–488.
14. Hygino da Cruz Jr, L. C., Rodriguez I. et al. Pseudoprogression and Pse u doresponse: Imaging Challenges in the Assessment of Postt reat ment Glioma // Am. J. Neuradiol.— 2011.— Vol. 32.— P. 1978–1985.
15. Topkan E., Topu K. S., Oymak E. et al. Pseudoprogression in patients with glioblastoma multiforme after conlurrent radiotherapy and temozolomide // Am. J. Clin. Oncol.— 2012.— Vol. 35, № 3.— P. 284–289.
16. Valk P. E., Dillon W. P. Radiation injury of the brain // Am. J. Neuroradiol.— 1991.— Vol. 12, № 1.— P. 45–65.
17. Kumar A. J., Leeds N. E., Fuller G. N. et al. Malignant gliomas: MR Imaging spectrum of radiation therapy-and chemotherapy–induced necrosis of the brain after treatment // Radiology.— 2000.— Vol. 217.— P. 377–384.
18. Gahramanov S., Muldoon L. et al. Pseudoprogression of Glioblastoma after Chemoand Radiation Therapy: Diagnosis by Using Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging with Ferumoxytol versus Gadoteridol and Correlation with Survival // Radiology.— 2013.— Vol. 266 (3).— P. 842–852.
19. Parvez K., Parvez A., Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence // J. Mol. Sci.— 2014.— Vol. 15 (7).— P. 11832–11846.
20. Song Y. S., Choi S. H. et al. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis // Korean J. Radiol.— 2013.— Vol. 14 (4).— P. 662–672.
21. Chakvarti A., Erkkinen M. G., Nestler U. et al. Temozolomide mediated radiation enhancement in glioblastoma: a report on underlying mechanisms // Clin. Cancer. Res.— 2006.— Vol. 12.— P. 4738–4746.
Review
For citations:
Zhuravlevа M.A., Trofimova Т.N., Shershever A.S. CT-PERFUSION POSSIBILITIES IN DETECTION AND EVALUATION CASES OF PSEUDOPROGRESSION AFTER COMBINED TREATMENT OF BRAIN GLIOMAS. Diagnostic radiology and radiotherapy. 2015;(3):15-23. (In Russ.)