1. Patino M., Prochowski A., Agrawal M.D. et al. Material separation using dual-energy CT: Current and emerging applications // Radiographics. 2016. Vol. 36. P. 1087-1105.
2. De Cecco C.N., Schoepf U.J., Steinbach L. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 3: Vascular, Cardiac, Pulmonary, and Musculoskeletal Applications // J. Comput. Assist. Tomogr. 2016. Vol. 41. P. 1-7.
3. De Cecco C.N., Darnell A., Rengo M. et al. Dual-energy CT: oncologic applications // AJR. 2012. Vol. 199, No 5. Р. 98-105.
4. Johnson T.R.C. Dual-Energy CT: general principles // AJR. 2012. Vol. 199. P. 3-8.
5. Silva A.C., Morse B.G., Hara A.K. et al. Dual-energy (spectral) CT: applications in abdominal imaging // Radiographics. 2011. Vol. 31. (4). P. 1031-1046.
6. Bolus D.N. Dual-Energy Computed Tomographic Scanners: Principles, Comparisons, and Contrasts // J. Comput. Assist. Tomogr. 2013. Vol. 37. P. 944-947.
7. Mc Collough C.H., Leng S., Yu L., Fletcher J.G. Dual- and multiEnergy CT: principles, technical approaches, and clinical applications // Radiology. 2015. Vol. 276. P. 637-653.
8. De Cecco C.N., Darnell A., Macías N. et al. Second-generation dual-energy computed tomography of the abdomen: radiation dose comparison with 64- and 128-row single-energy acquisition // J. Comput. Assist. Tomogr. 2013. Vol. 37 (4). P. 543-546.
9. Kaza R.K., Raff E.A., Davenport M.S. et al. Virtual Unenhanced Images Generated Using Multimaterial Decomposition from Fast Kilovoltage-switching Dual-energy CT // Acad. Radiol. 2017. Vol. 24 (3). P. 365-372.
10. Kaufmann S., Sauter A., Spira D. et al. Tin-filter enhanced dualenergy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging // Acad. Radiol. 2013. Vol. 20. P. 596-603.
11. Ananthakrishnan L., Rajiah P., Ahn R. et al. Spectral detector CTderived virtual noncontrast images: comparison of attenuation values with unenhanced CT // Abdominal Radiology. 2017. Vol. 42 (3). P. 702-709.
12. Siegel M.J., Kaza R.K., Bolus D.N. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on DualEnergy CT, Part 1: Technology and Terminology // J. Comput. Assist. Tomog. 2016. Vol. 40. P. 841-845.
13. Foley W.D., Shuman W.P., Siegel M.J. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity // J. Comput. Assist. Tomogr. 2016. Vol. 40. P. 846-850.
14. Grajo J.R., Patino M., Prochowski A. et al. Dual energy CT in practice: basic principles and applications // Appl. Radiol. 2016. P. 6-12.
15. Sosna J., Mahgerefteh S., Goshen L. et al. Virtual nonenhanced abdominal dual-energy MDCT: Analysis of image characteristics // World J. Radiol. 2012. Vol. 4 (4). P. 167-173.
16. Tian S.F., Liu A.L., Liu J.H. et al. Application of computed tomography Virtual Noncontrast Spectral Imaging in evaluation of hepatic metastases: a preliminary study // Chin. Med. J. 2015. Vol. 128, Issue 5. P. 610-614.
17. Lee S.H., Lee J.M., Kim K.W. et al. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps // Invest. Radiol. 2011. Vol. 46 (2). P. 77-84.
18. De Cecco C.N., Boll D.T., Bolus D.N. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 4: Abdominal and Pelvic Applications // J. Comput. Assist. Tomogr. 2017. Vol. 41, No 1. P. 8-14.
19. Stolzmann P., Frauenfelder T., Pfammatter T. et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dualenergy dual-source CT // Radiology. 2008. Vol. 249. P. 682-691.
20. Lago K.N., Vallejos J., Capunay C. et al. Dual-energy computed tomography for the detection of focal liver lesions. Tomografía computada de doble energía para la detección de lesiones focales hepáticas // Radiología. 2017. Vol. 59 (4). P. 306-312.
21. Caruso D., De Cecco C.N., Schoepf U.J. et al. Can dual-energy CT improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images // J. Clin. Imaging. 2016. Vol. 41. P. 118-124.
22. Morgan D.E. The Role of Dual-Energy Computed Tomography in Assessment of Abdominal Oncology and Beyond // Radiol. Clin. N. Am. 2018. Vol. 56. P. 565-585.
23. Wang Q., Shi G., Qi X. et al. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization // Eur. J. Radiology. 2014. Vol. 83 (10). P. 1759-1764.
24. Xin X., Zhu B., Chen J. et al. The use of spectral CT imaging in characterization of pleural fluid: a new method to differentiate transudates from exudates // Chin. J. Radiol. 2011. Vol. 45 (8). P. 723-726.
25. Kim K.S., Lee J.M., Kim S.H. et al. Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies // Invest. Radiol. 2010. Vol. 45. P. 149-157.
26. Deleslle M. A., Pontana F., Duhamel A. et al. Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT // Radiology. 2013. Vol. 267 (1). P. 256-266.
27. Patino M., Prochowski A., Agrawal M. D. Material separation using Dual-Energy CT: current and emerging applications // Radiographics. 2016. Vol. 36. P. 1087-1105.
28. Laroia S.T., Bhadoria A.S., Venigalla Y. et al. Role of dual energy spectral computed tomography in characterization of hepatocellular carcinoma: Initial experience from a tertiary liver care institute // Eur. J. Radiology Open. 2016. Vol. 3. P. 162-171.
29. Kartalis N., Brehmer K., Loizou L. Multi-detector CT: Liver protocol and recent developments // Eur. J. Radiol. 2017. Vol. 97. P. 101-109.
30. Anzideia M., Di Martino M., Sacconi B. et al. Evaluation of image quality, radiation dose and diagnostic performance of dual-energy CT datasets in patients with hepatocellular carcinoma // Clin. Radiol. 2015. Vol. 70. P. 966-973.
31. Hayashi M., Matsui O., Ueda K. et al. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material // Radiology. 2002. Vol. 225. P. 143-149.
32. Zhang Y., Tang J., Xu J. et al. Analysis of pulmonary pure groundglass nodule in enhanced dual energy CT imaging for predicting invasive adenocarcinoma: comparing with conventional thin-section CT imaging // J. Thorac. Dis. 2017. Vol. 9 (12). P. 4967-4978.
33. Peijie Lv., Lin X.Z., Li J. et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method // Radiology. 2011. Vol. 259 (3). P. 720-729.
34. Jiang T., Zhu A.X., Sahani D.V. Established and novel imaging biomarkers for assessing response to therapy in hepatocellular carcinoma // J. Hepatol. 2013. Vol. 58 (1). P. 169-177.
35. Dai Ch., Cao Y., Jia Y. et al. Differentiation of renal cell carcinoma subtypes with different iodine quantification methods using singlephase contrast-enhanced dualenergy CT: areal vs. volumetric analyses // Abdom Radiol. 2018. Vol. 43 (3). P. 672-678.
36. Mengsu Z., Zhou J., Brook O.R. et al. Split-Bolus spectral multidetector CT of the Pancreas: assessment of radiation dose and tumor conspicuity // Radiology. 2013. Vol. 269 (1). P. 139-148
37. Morgan D.E., Weber A.C., Lockhart M.E. et al. Differentiation of high lipid content from low lipid content adrenal lesions using single-source rapid kilovolt (peak)-switching dual-energy multidetector CT // Comput. Assist. Tomogr. 2013. Vol. 37 (6). P. 937-943.
38. Yu Y., Lin X., Chen K. et al. Hepatocellular carcinoma and focal nodular hyperplasia of the liver: differentiation with CT spectral imaging // Eur. Radiol. 2013. Vol. 23. P. 1660-1668.
39. Yu Y., He N., Sun K. et al. Differentiating hepatocellular carcinoma from angiomyolipoma of the liver with CT spectral imaging: a preliminary study // Clin. Radiol. 2013. Vol. 68 (9). P. 491-497.
40. Hayashi M., Matsui O., Ueda K. et al. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material // Radiology. 2002. Vol. 225. P. 143-149.
41. Matsui O. Imaging of multistep human hepatocarcinogenesis by CT during intra-arterial contrast injection // Intervirology. 2004. Vol. 47. P. 271-276.
42. Nattenmüller J., Hosch W., Nguyen T.T., Skornitzke S. Hypodense liver lesions in patients with hepatic steatosis: do we profit from dual-energy computed tomography? // Eur. Soc. Radiol. 2015. Vol. 25. P. 3567-3576.
43. Muenzel D., Grace C.L., Hei Sh.Y. et al. Material density iodine images in dual-energy CT: Detection and characterization of hypervascular liver lesions compared to magnetic resonance imaging // European Journal of Radiology. 2017. Vol. 95. P. 300-306.
44. Pfeiffer D., Parakh A., Patino M. et al. Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC // Abdom. Radiol. 2018. Vol. 43. P. 3317-3323.