Preview

Diagnostic radiology and radiotherapy

Advanced search

MACHINE LEARNING IN GLIOMA SEGMENTATION FOR STEREOTACTIC RADIATION THERAPY PLANNING

https://doi.org/10.22328/2079-5343-2019-10-2-24-31

Abstract

Glioma is one of the most common primary tumors among adults. Glioblastoma multiforme (GBM) is the most aggressive form of glioma with very poor prognosis. The median patient survival is about 15 months. Treatment of glioma requires a complex approach combining surgical resection, chemotherapy and radiation therapy. Definition of the tumor border is the important step of radiation therapy treatment planning. The rapid development of the diagnostic methods made it possible to address this challenging task. However, the optimal treatment volume is still a matter of debate due to the complex biological behavior and high invasiveness of the tumor. Furthermore, the subjective interpretation of the visual information by the expert existed. So far, the application of machine learning in image analysis is a promising tool for glioma segmentation in multimodal MRI imaging. This review aims to summarize recent works using machine learning in high — and low — grade glioma segmentation.

About the Authors

A. V. Dalechina
JSC «Neurosurgery business Center» (Moscow Gamma Knife Center)
Russian Federation
Moscow


M. G. Belyaev
Skolkovo institute of science and technology
Russian Federation
Moscow


A. N. Tyurina
Burdenko neurosurgical institute
Russian Federation
Moscow


S. V. Zolotova
Burdenko neurosurgical institute
Russian Federation
Moscow


I. N. Pronin
Burdenko neurosurgical institute
Russian Federation
Moscow


A. V. Golanov
Burdenko neurosurgical institute
Russian Federation
Moscow


References

1. Dupont C., Betrouni N., Reyns N. et al. On image segmentation methods applied to glioblastoma: state of art and new trends // IRBM, Elsevier Masson. 2016. Vol. 37 (3). P. 131–143.

2. Zhao F., Li M., Kong L. et al. Delineation of radiation therapy target volumes for patients with postoperative glioblastoma: A review // Onco Targets Ther. 2016. Vol. 9. P. 3197–3204.

3. Colman H., Berkey B.A., Maor M.H. et al. Phase II Radiation Therapy Oncology Group trial of conventional radiation therapy followed by treatment with recombinant interferon-beta for supratentorial glioblastoma: results of RTOG 9710 // Int. J. Radiat. Oncol. Biol. Phys. 2006. Vol. 66 (3). P. 818–824.

4. Chang E.L., Akyurek S., Avalos T. et al. Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 68 (1). P. 144–150.

5. Akkus Z., Galimzianova A., Hoogi A. et al. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions // J. Digit. Imaging. 2017. Vol. 30. P. 449–459.

6. Lotan E., Jain R., Razavian N. et al. State of the Art: Machine Learning Applications in Glioma Imaging // AJR. Am. J. Roentgenol. 2019. Vol. 212. P. 26–37.

7. Bauer S., Wiest R., Nolte L. et al. A survey of MRI-based medical image analysis for brain tumor studies // Phys. Med. Biol. 2013. P. 58. R97–R129.

8. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016.

9. LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521 (7553). P. 436.

10. Bakas S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629. 2018.

11. Pereira S., Pinto A., Alves V., Silva C.A. Brain tumor segmentation using convolutional neural networks in MRI images // IEEE Trans Med Imaging. 2016. Vol. 35. P. 1240–1251.

12. Kamnitsas K., Ledig C., Newcombe V.F.J. et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation // Med. Image Anal. P. 2017. Vol. 36. P. 61–78.

13. Zhang W., Li R., Deng H. et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation // Neuroimage. 2015. Vol. 108. P. 214–224.

14. Dvorak P., Menze B. Structured prediction with convolutional neural networks for multimodal brain tumor segmentation // Proceedings of the Multimodal Brain Tumor Segmentation Challenge (MICCAI-BRATS). Munich: Springer, 2015. P. 13–24.

15. Zhao L., Jia K. Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis // IEEE Xplore Digital Library website. ieeexplore.ieee.org/document/7415818/. Published 2015. Accessed August 15, 2018.

16. Havaei M., Davy A., Warde-Farley D. et al. Brain tumor segmentation with deep neural networks // Med. Image Anal. 2017. Vol. 35. P. 18–31.

17. Urban G., Bendszus M., Hamprecht F.A. et al. Multi-modal brain tumor segmentation using deep convolutional neural networks // Proceedings of the Multimodal Brain Tumor Segmentation Challenge (MICCAI-BRATS). Boston, MA, 2014. P. 31–35.

18. Long J., Shelhamer E., Darrell T. Fully convolutional networks for semantic segmentation // IEEE Xplore Digital Library website. Ieeexplore.ieee. org/document/7298965/. Published 2015.

19. Chang P. Fully convolutional deep residual neural networks for brain tumor segmentation. // Proceedings of Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Athens, Greece: Springer, 2016. P. 108–118.

20. Ronneberger O., Fischer P., Brox T. U-net: convolutional networks for biomedical image segmentation // MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015. P. 234–241.

21. Kamnitsas K., Bai W., Ferrante S. et al. Ensembles of multiple models and architectures for robust brain tumour segmentation // Proceedings of Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Quebec City, Canada: Springer, 2017. P. 450–462.

22. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization // arXiv preprint arXiv:1810.11654. 2018.

23. Ghafoorian M., Mehrtash A., Kapur T. et al. Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. arXiv preprint arXiv:1702.07841. 2017.

24. Valindria V. V., Lavdas I., Bai W. et al. Domain adaptation for MRI organ segmentation using reverse classification accuracy // arXiv preprint arXiv:1806.00363. 2018.

25. Mabray M.C., Barajas R.F., Cha S. Modern brain tumor imaging Brain Tumor // Res. Treat. 2015. Vol. 3. P. 8–23.

26. Agn M., Munck P., Puonti O. et al. A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning // Medical Image Analysis. 2019. Vol. 54. P. 220–237.

27. Lustberg T., van Soest J., Gooding M. et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer // Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2017. Vol. 126. P. 312–317.

28. Nikolov S. et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy // arXiv preprint arXiv:1809.04430. 2018.

29. Masch W.R. et al. Comparison of Diffusion tensor imaging and magnetic resonance perfusion imaging in differentiating recurrent brain neoplasm from radiation necrosis // Acad Radiol. 2016. Vol. 23 (5). P. 569–576.

30. Tyurina A.N., Fadeeva L.M., Pronin I.N. 3D-proton MR spectroscopy in the diagnosis of glial brain tumors. Scientific materials of the III Congress of the National Society of Neuro X-ray Genol, St. Petersburg, 2016, рр. 116–117 (In Russ.)


Review

For citations:


Dalechina A.V., Belyaev M.G., Tyurina A.N., Zolotova S.V., Pronin I.N., Golanov A.V. MACHINE LEARNING IN GLIOMA SEGMENTATION FOR STEREOTACTIC RADIATION THERAPY PLANNING. Diagnostic radiology and radiotherapy. 2019;(2):24-31. (In Russ.) https://doi.org/10.22328/2079-5343-2019-10-2-24-31

Views: 1288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)