Preview

Diagnostic radiology and radiotherapy

Advanced search

MRI pattern changes in pelvic muscle and lower limb in patients with dysferlinopathy

https://doi.org/10.22328/2079-5343-2020-11-1-93-105

Abstract

Introduction. Dysferlinopathy is a phenotypically heterogeneous group of hereditary muscular dystrophies caused by mutations in the dysferlin gene (DYSF). Debut in adolescence, predominantly in physically developed patients, combined with the often subacute development of hypercreatine phosphatemia and edematous muscle changes in MRI often leads to diagnostic errors. Purpose of the study: to determine the most typical MRI pattern of muscle damage of the pelvic girdle and lower limb in patients with dysferlinopathy. Materials and methods. 40 people were examined, among which 20 patients with a clinical picture of dysferlinopathy with an equal ratio of Miyoshi phenotypes and LGMD and an average age of 35 (24; 44) years. Comprehensive clinical and instrumental examination included neurological, electroneuromyographic and molecular genetic studies (NGS). Magnetic resonance imaging of the muscles of the pelvic girdle and lower limb was performed in 20 patients and a control group equivalent in sex and age. Results. The use of semi-quantitative MRI indicators — relative signal intensity — D (D=T1 muscle (STIR) / T1 (STIR) subcutaneous fat layer) made it possible to formulate the characteristics of a common typical MRI pattern of muscle involvement in dysferlinopathy. An increase in the intensity of the relative signal D, T1 in the rear muscle group of the thighs and lower legs, indicating fatty infiltration was observed most frequently, while a decrease in D, STIR values was observed in the anterior and medial muscles of the thighs, reflecting the presence of edema of the previous fatty degeneration of these muscles. Conclusion. In addition to the general idea of muscle involvement in dysferlinopathy, it is advisable to consider the «early», «typical / completed» and «late» MRI patterns of dysferlinopathy that increase the effectiveness of the diagnosis of this disease. In the differential diagnosis of the Miyoshi phenotype from LGMD, one should focus on maintaining normal values of D, T1 from m. gluteus maximus and m. popliteus at all stages of the disease.

About the Authors

V. A. Tsargush
Military Medical Academy
Russian Federation

Vadim A. Tsargush

St. Petersburg



S. N. Bardakov
Military Medical Academy
Russian Federation

Sergey N. Bardakov

St. Petersburg



S. S. Bagnenko
Military Medical Academy
Russian Federation

Sergey S. Bagnenko

St. Petersburg



I. S. Zheleznyak
Military Medical Academy
Russian Federation

Igor S. Zheleznyak

St. Petersburg



Z. R. Umakhanova
Dagestan State Medical University
Russian Federation

Zoya R. Umakhanova

Makhachkala



P. G. Akhmedova
Dagestan State Medical University
Russian Federation

Patimat G. Akhmedova

Makhachkala



R. M. Magomedova
Dagestan State Medical University
Russian Federation

Raisat M. Magomedova

Makhachkala



K. U. Mollaeva
Dagestan State Medical University
Russian Federation

Kamila U. Mollaeva

Makhachkala



K. Z. Zulfugarov
Dagestan State Medical University
Russian Federation

Kamil Z. Zulfugarov

Makhachkala



A. A. Emelyantsev
Military Medical Academy
Russian Federation

Aleksander A. Emelyantsev

St. Petersburg



E. N. Chernets
Interregional public organization «I-MIO Project»
Russian Federation

Ekaterina N. Chernets

Podolsk



I. A. Yakovlev
Human Stem Cells Institute (HSCI); Kazan Federal University; Genotarget LLC, Skolkovo Innovation Centre
Russian Federation

Ivan A. Yakovlev

Moscow
Kazan 



G. D. Dalgatov
Scientific and Clinical Center of Otorhinolaryngology
Russian Federation

Gimat D. Dalgatov

Moscow



A. A. Isaev
Human Stem Cells Institute (HSCI)
Russian Federation

Artur A. Isaev

Moscow



R. V. Deev
Human Stem Cells Institute (HSCI); North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Roman V. Deev

Moscow
St. Petersburg 



References

1. Anderson L.V. et al. Dysferlin is a plasma membrane protein and is expressed early in human development // Hum. Mol. Genet. 1999. Vol. 8 (5). Р. 855–861. DOI: 10.1093/hmg/8.5.855.

2. Bushby K.M. Dysferlin and muscular dystrophy // Acta Neurol. Belg. 2000. Vol. 100 (3). Р. 142–145. PMID: 11098285.

3. Carter J.C. et al. Muscular Dystrophies // Clin Chest Med. 2018. Vol. 39 (2). Р. 377–389. DOI:10.1016/j.ccm.2018.01.004.

4. Straub V., Carlier P.G., Mercuri E. TREAT-NMD workshop: pattern recognition in genetic muscle diseases using muscle MRI: 25–26 February 2011, Rome, Italy // Neuromuscul. Disord. 2012. Vol. 22, Suppl 2. Р. S42–53. DOI: 10.1016/j.nmd.2012.08.002.

5. Ten Dam L. et al. Comparing clinical data and muscle imaging of DYSF and ANO5 related muscular dystrophies // Neuromuscul. Disord. 2014. Vol. 24 (12). Р. 1097–1102. DOI: 10.1016/j.nmd.2014.07.004.

6. Fatehi F. et al. Dysferlinopathy in Iran: Clinical and genetic report // J. Neurol. Sci. 2015. Vol. 359 (1–2). Р. 256–259. DOI: 10.1016/j.jns.2015.11.009.

7. Zuev A.A. et al. Possibilities of clinical and radiological diagnosis of hereditary myopathies, Functional Diagnostics, 2007, No 14 (4), рр. 64–73 (In Russ).

8. Trufanov G.E. et al. Methods of MRI studies of the musculoskeletal system. Actual issues of radiation diagnosis of diseases and injuries in military personnel. St. Petersburg, 2001, рр. 144–145 (In Russ.).

9. Mercuri E. et al. A short protocol for muscle MRI in children with muscular dystrophies // Eur. J. Paediatr. Neurol. 2002. Vol. 6 (6). Р. 305–307. DOI: 10.1016/s1090–3798(02)90617–3.

10. Yushkevich P.A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability // Neuroimage. 2006. Vol. 31 (3). Р. 1116–1128. DOI: 10.1016/j.neuroimage.2006.01.015.

11. Moore U.R. et al. Teenage exercise is associated with earlier symptom onset in dysferlinopathy: a retrospective cohort study // J. Neurol. Neurosurg Psychiatry. 2018. Vol. 89 (11). Р. 1224–1226. DOI: 10.1136/jnnp-2017-317329.

12. Moody S., Mancias P. Dysferlinopathy presenting as rhabdomyolysis and acute renal failure // J. Child Neurol. 2013. Vol. 28 (4). Р. 502–505. DOI: 10.1177/0883073812444607.

13. Xu C. et al. Limb-girdle muscular dystrophy type 2B misdiagnosed as polymyositis at the early stage: Case report and literature review // Medicine (Baltimore). 2018. Vol. 97 (21). Р. e10539. DOI:10.1097/MD.0000000000010539.

14. Scalco R.S. et al. Polymyositis without Beneficial Response to Steroid Therapy: Should Miyoshi Myopathy be a Differential Diagnosis? // Am. J. Case Rep. 2017. Vol. 18. Р. 17–21. DOI: 10.12659/ajcr.900970.

15. Mercuri E. et al. Muscle MRI in inherited neuromuscular disorders: past, present, and future // J. Magn Reson Imaging. 2007. Vol. 25 (2). Р. 433–440. DOI: 10.1002/jmri.20804.

16. Diaz-Manera J. et al. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials // J. Neurol. Neurosurg Psychiatry. 2018. Vol. 89 (10). Р. 1071–1081. DOI: 10.1136/jnnp-2017–317488.

17. Umakhanova, Z.R. et al. Twenty-Year Clinical Progression of Dysferlinopathy in Patients from Dagestan // Front Neurol. 2017. Vol. 8. Р. 77. DOI: 10.3389/fneur.2017.00077.

18. Carlier P.G. et al. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials // J. Neuromuscul. Dis. 2016. Vol. 3 (1). Р. 1–28. DOI: 10.3233/JND-160145.

19. Diaz-Manera J. et al. Muscle MRI in muscular dystrophies // Acta Myol. 2015. Vol. 34 (2–3). Р. 95–108. DOI: 10.3233/JND-160145.

20. Arrigoni F. et al. Multiparametric quantitative MRI assessment of thigh muscles in limb-girdle muscular dystrophy 2A and 2B // Muscle Nerve. 2018. Vol. 58 (4). Р. 550–558. DOI: 10.1002/mus.26189.

21. Wattjes M.P., Kley R.A., Fischer D. Neuromuscular imaging in inherited muscle diseases // Eur. Radiol. 2010. Vol. 20 (10). Р. 2447–2460. DOI: 10.1007/s00330-010-1799-2.

22. Kesper K. et al. Pattern of skeletal muscle involvement in primary dysferlinopathy: a whole-body 3.0-T magnetic resonance imaging study // Acta Neurol. Scand. 2009. Vol. 120 (2). Р. 111–118. DOI: 10.1111/j.16000404.2008.01129.x.

23. Takahashi T. et al. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B // J. Neurol. Neurosurg Psychiatry. 2013. Vol. 84 (4). Р. 433–440. DOI: 10.1136/jnnp-2011-301339.

24. Jin S. et al. Heterogeneous characteristics of MRI changes of thigh muscles in patients with dysferlinopathy // Muscle Nerve. 2016. Vol. 54 (6). Р. 10721079. DOI: 10.1002/mus.25207.

25. Kim H.K. et al. Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments // Pediatr. Radiol. 2013. Vol. 43 (10). Р. 1327–1335. DOI: 10.1007/s00247013-2696-z.

26. Diaz J. et al. Broadening the imaging phenotype of dysferlinopathy at different disease stages // Muscle Nerve. 2016. Vol. 54 (2). Р. 203–210. DOI: 10.1002/mus.25045.

27. Okahashi S. et al. Asymptomatic sporadic dysferlinopathy presenting with elevation of serum creatine kinase. Typical distribution of muscle involvement shown by MRI but not by CT // Intern. Med. 2008. Vol. 47 (4). Р. 305–307. DOI: 10.2169/internalmedicine.47.0519.

28. Paradas C. et al. A new phenotype of dysferlinopathy with congenital onset // Neuromuscul. Disord. 2009. Vol. 19 (1). Р. 21–25. DOI: 10.1016/j.nmd.2008.09.015.

29. Jethwa H. et al. Limb girdle muscular dystrophy type 2B masquerading as inflammatory myopathy: case report // Pediatr. Rheumatol. Online J. 2013. Vol. 11 (1). Р. 19. DOI: 10.1186/1546-0096-11-19.


Review

For citations:


Tsargush V.A., Bardakov S.N., Bagnenko S.S., Zheleznyak I.S., Umakhanova Z.R., Akhmedova P.G., Magomedova R.M., Mollaeva K.U., Zulfugarov K.Z., Emelyantsev A.A., Chernets E.N., Yakovlev I.A., Dalgatov G.D., Isaev A.A., Deev R.V. MRI pattern changes in pelvic muscle and lower limb in patients with dysferlinopathy. Diagnostic radiology and radiotherapy. 2020;11(1):93-105. (In Russ.) https://doi.org/10.22328/2079-5343-2020-11-1-93-105

Views: 1270


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)