Preview

Diagnostic radiology and radiotherapy

Advanced search

Comparison of the diagnostic effectiveness of whole body magnetic resonance imaging with diffusion weighted imaging and positron emission tomography/computed tomography in determining tumor response in lymphoma after the end of chemotherapy: Minsk scaleand Deauville scale

https://doi.org/10.22328/2079-5343-2020-11-1-78-92

Abstract

Introduction. Positron emission tomography/computed tomography (PET/CT) is a recommended technique for tumor response evaluation in lymphoma after treatment. The possibilities of the whole body magnetic resonance imaging with diffusion-weighted imaging (MRI-DWI) for tumor response evaluation in lymphoma are not well studied. Objective: to compare the diagnostic effectiveness of whole body MRI with a diffusion-weighted imaging (MRI-DWI) and PET/CT in determining tumor response in lymphoma after the end of chemotherapy. Materials and methods. A prospective study included 105 adult patients with lymphoma whounderwent whole body MRI-DWI and PET/CTafter the end of chemotherapy and who were followed-up for at least 6 months. To interpret the MRI-DWI, the 5-level scale (Minsk scale) proposed by us was used. Categories 1–3 were considered a sign of complete tumor response, categories 4–5 were a sign of non-complete response. Results. According to the reference standard, complete tumor response was established in 77% of patients, non-complete response in 23%. The assessment of the tumor response in MRI-DWI and PET/CT matched in 89% of patients. The agreement of MRI-DWI (k =0,76, p=0,000) and PET/CT (k =0,78, p=0,000) with the reference standard is good. The sensitivity, specificity, accuracy, positive and negative prognostic value of MRI-DWI were 66,7%, 100,0%, 92,4%, 100,0%, 91,0%, PET/CT — 83,3%, 95,1%, 92,4%, 83,3%, 95,1%, respectively. The diagnostic effectiveness of the methods is not significantly different (p=0,32). The most common reason for the incorrect determination of the tumor response in MRI-DWI was non-enlarged lymph nodes, and in PET/CT — metabolically active non-tumor diseases. 3-year progression-free survival with negative and positive MRI-DWI results was 93% and 25% (p=0,000), 3-year overall survival — 97% and 70% (p=0,011), respectively. Conclusion. Whole body MRI-DWI and Minsk scale are recommended for use in patients with lymphoma to determine tumor response after the end of chemotherapy as a non-irradiative and effective alternative to PET/CT.

About the Authors

S. A. Kharuzhyk
Republican Scientific and Practical Center of Oncology and Medical Radiology named for N. N. Alexandrov
Belarus

Siarhei A. Kharuzhyk

Minsk



E. A. Zhavrid
Republican Scientific and Practical Center of Oncology and Medical Radiology named for N. N. Alexandrov
Belarus

Edward A. Zhavrid

Minsk



A. V. Dziuban
Republican Scientific and Practical Center of Oncology and Medical Radiology named for N. N. Alexandrov
Belarus

Andrei V. Dziuban

Minsk



E. V. Sukolinskaja
Republican Scientific and Practical Center of Oncology and Medical Radiology named for N. N. Alexandrov
Belarus

Elena V. Sukolinskaja

Minsk



O. A. Kalenik
Republican Scientific and Practical Center of Oncology and Medical Radiology named for N. N. Alexandrov
Belarus

Olga A. Kalenik

Minsk



References

1. Cheson B.D., Fisher R.I., Barrington S.F., Cavalli F., Schwartz L.H., Zucca E., Lister T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification // J. Clin. Oncol. 2014. Vol. 32. P. 3059–3068. https://doi.org/10.1200/JCO.2013.54.8800.

2. Kharuzhyk S.A., Zhavrid E.A., Sachivko N.V. Comparison of diagnostic effectiveness of X-ray computed tomography, magnetic resonance imaging and diffusion-weighted magnetic resonance imaging in the differentiation of residual tumors and postherapeutic masses in patients with lymphoma after treatment. Oncohematology, 2016, No. 3, рр. 40–48. (In Russ.) https://doi.org/10.17650/1818-8346-2016-11-3-40-48.

3. Padhani A.R., Lecouvet F.E., Tunariu N., Koh D.M., De Keyzer F., Collins D.J., Sala E., Schlemmer H.P., Petralia G., Vargas H.A., Fanti S., Tombal H.B., de Bono J. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer // Eur. Urol. 2017. Vol. 71. P. 81–92. https://doi.org/10.1016/j.eururo.2016.05.033.

4. Lecouvet F.E, Talbot J.N., Messiou C., Bourguet P., Liu Y., de Souza N.M. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group // Eur. J. Cancer. 2014. Vol. 50. P. 2519–2531. https://doi.org/10.1016/j.ejca.2014.07.002.

5. Dimopoulos M.A., Hillengass J., Usmani S., Zamagni E., Lentzsch S., Davies F.E., Raje N., Sezer O., Zweegman S., Shah J., Badros A., Shimizu K., Moreau P., Chim C.S., Lahuerta J.J., Hou J., Jurczyszyn A., Goldschmidt H., Sonneveld P., Palumbo A., Ludwig H., Cavo M., Barlogie B., Anderson K., Roodman G.D., Rajkumar S.V., Durie B.G., Terpos E. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement // J. Clin. Oncol. 2015. Vol. 33. P. 657–664. https://doi.org/10.1200/JCO.2014.57.9961.

6. Barnes A., Alonzi R., Blackledge M., Charles-Edwards G., Collins DJ., Cook G., Coutts G., Goh V., Graves M., Kelly C., Koh DM., McCallum H., Miquel M.E., O’Connor J., Padhani A., Pearson R., Priest A., Rockall A., Stirling J., Taylor S., Tunariu N. van der Meulen J., Walls D., Winfield J., Punwani S. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer // Br. J. Radiol. 2018. Vol. 91. P. 20170577. https://doi.org/10.1259/bjr.20170577.

7. De Souza N.M., Winfield J.M., Waterton J.C., Weller A., Papoutsaki M.V., Doran S.J., Collins D.J., Fournier L., Sullivan D., Chenevert T., Jackson A., Boss M., Trattnig S., Liu Y. Implementing diffusion-weighted MRI for body imaging in prospective multicenter trials: current considerations and future perspectives // Eur. Radiol. 2018. Vol. 28. P. 1118–1131. https://doi.org/10.1007/s00330-017-4972-z.

8. Taouli B., Beer A.J., Chenevert T., Collins D., Lehman C., Matos C., Padhani A.R., Rosenkrantz A.B., Shukla-Dave A., Sigmund E., Tanenbaum L., Thoeny H., Thomassin-Naggara I., Barbieri S., CorcueraSolano I., Orton M., Partridge S.C., Koh D.M. Diffusion-weighted imaging outside the brain: Consensus statement from an ISMRM-sponsored workshop // J. Magn. Reson. Imaging. 2016. Vol. 44. P. 521–540. https://doi.org/10.1002/jmri.25196.

9. Albano D., Patti C., La Grutta L., Agnello F., Grassedonio E., Mulè A., et al. Comparison between whole-body MRI with diffusion-weighted imaging and PET/CT in staging newly diagnosed FDG-avid lymphomas // Eur. J. Radiol. 2016. Vol. 85. P. 313–318. https://doi.org/10.1016/j.ejrad.2015.

10. Maggialetti N., Ferrari C., Minoia C., Asabella A.N., Ficco M., Loseto G., De Tullio G., de Fazio V., Calabrese A., Guarini A., Rubini G., Brunese L. Role of WB-MR/DWIBS compared to 18 F-FDG PET/CT in the therapy response assessment of lymphoma // Radiol. Med. 2016. Vol. 121. P. 132–143. https://doi.org/10.1007/s11547-015-0581-6.

11. Herrmann K., Queiroz M., Huellner M.W., de Galiza Barbosa F., Buck A., Schaefer N., Stolzman P., Veit-Haibach P. Diagnostic performance of FDGPET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT // BMC Cancer. 2015. Vol. 15. P. 1002. https://doi.org/10.1186/s12885-015-2009-z.

12. Mayerhoefer M.E., Karanikas G., Kletter K., Prosch H., Kiesewetter B., Skrabs C., Porpaczy E., Weber M., Knogler T., Sillaber C., Jaeger U., Simonitsch-Klupp I., Ubl P., Müllauer L., Dolak W., Lukas J., Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18 F-FDGPET/CT-Controlled Prospective Study in 64 Patients // Clin. Cancer Res. 2015. Vol. 21. P. 2506–2513. https://doi.org/10.1158/1078-0432.CCR-14-2454.

13. Littooij A.S., Kwee T.C., de Keizer B., Bruin M.C., Coma A., Beek F.J., Fijnheer R., Nievelstein R.A. Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: A prospective multicenter study // J. Magn. Reson. Imaging. 2015. Vol. 42. P. 1646–1655. https://doi.org/10.1002/jmri.24938.

14. Meignan M., Gallamini A., Meignan M., Gallamini A., Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma // Leuk. Lymphoma. 2009. Vol. 50. P. 1257–1260. https://doi.org/10.1080/10428190903040048.

15. Meignan M., Itti E., Gallamini A., Younes A. FDG PET/CT imaging as a biomarker in lymphoma // Eur. J. Nucl. Med. Mol. Imaging. 2015. Vol. 42. P. 623–633. https://doi.org/10.1007/s00259-014-2973-6.

16. Barrington S.F., Mikhaeel N.G., Kostakoglu L., Meignan M., Hutchings M., Müeller S.P., Schwartz L.H., Zucca E., Fisher R.I., Trotman J., Hoekstra O.S., Hicks R.J., O’Doherty M.J., Hustinx R., Biggi A., Cheson B.D. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group // J. Clin. Oncol. 2014. Vol. 32. P. 3048–3058.

17. Tsuji K., Kishi S., Tsuchida T., Yamauchi T., Ikegaya S., Urasaki Y., Fujiwara Y., Ueda T., Okazawa H., Kimura H. Evaluation of staging and early response to chemotherapy with whole-body diffusion-weighted MRI in malignant lymphoma patients: A comparison with FDG-PET/CT // J. Magn. Reson. Imaging. 2015. Vol. 41. P. 1601–1607. https://doi.org/10.1002/jmri.24714.

18. Algorithms for the diagnosis and treatment of malignant neoplasms: clinical protocol / Ministry of Health of the Republic of Belarus. Minsk: Professional Publications, 2019, 616 p. (In Russ.).

19. Kharuzhyk S.A., Zhavrid E.A., Sachivko N.V. Diagnostic effectiveness of whole body diffusionweighted magnetic resonance imaging in focal and diffuse bone marrow involvement in patients with lymphoma. Med. Visualiz., 2017, No. 5, рр. 6681 (In Russ.) https://doi.org/10.24835/1607-0763-2017-5-66-81.

20. Hoane B.R., Shields A.F., Porter B.A., Shulman H.M. Detection of lymphomatous bone marrow involvement with magnetic resonance imaging // Blood. 1991. Vol. 78. P. 728–738.

21. Adams H.J., Kwee T.C., Vermoolen M.A., de Keizer B., de Klerk J.M., Adam J.A., Fijnheer R., Kersten M.J., Stoker J., Nievelstein R.A. Whole-body MRI for the detection of bone marrow involvement in lymphoma: prospective study in 116 patients and comparison with FDG-PET // Eur. Radiol. 2013. Vol. 23. P. 2271–228. https://doi.org/10.1007/s00330-013-2835-9.

22. El Khouli R.H., Macura K.J., Barker P.B., Habba M.R., Jacobs M.A., Bluemke D.A. Relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced MRI of the breast // J. Magn. Reson. Imaging. 2009. Vol. 30. P. 999–1004. https://doi.org/10.1002/jmri.21947.

23. Crewson P.E. Reader agreement studies // Am. J. Roentgenol. 2005. Vol. 184. P. 1391–1397.

24. Padhani A.R., Koh D.M., Collins D.J. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions // Radiology. 2011. Vol. 261. P. 700–718. https://doi.org/10.1148/radiol.11110474.

25. Sakovich R.A., Kharuzhyk S.A., Dziuban A.V., Baranovski O.A., Paddubny K.V., Gotto S.I., Zhavrid E.A. Interpretation of whole body FDG-PET/CT examinations in patients with lymphoma after chemotherapy using Deauville scale and semiquantitative analysis. Oncol. J., 2017, Vol. 11, No. 3, рр. 5–16 (In Russ.).

26. Adams H.J.A, Kwee T.C. Proportion of false-positive follow-up FDG-PET scans in lymphoma: Systematic review and meta-analysis // Crit. Rev. Oncol. Hematol. 2019. Vol. 141. P. 73–81. https://doi.org/10.1016/j.critrevonc.2019.05.010.

27. Adams H.J., Nievelstein R.A., Kwee T.C. Prognostic value of complete remission status at end-oftreatment FDG-PET in R-CHOP-treated diffuse large B-cell lymphoma: systematic review and meta-analysis // Br. J. Haematol. 2015. Vol. 170. P. 185–191. https://doi.org/10.1111/bjh.13420.

28. Kharuzhyk S.A., Zhavrid E.A., Sachivko N.V. Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient measurement for monitoring and early tumor response prediction during lymphoma chemotherapy. Med. Visualiz., 2015, No 5, рр. 83–99 (In Russ.).

29. Toledano-Massiah S., Luciani A., Itti E., Zerbib P., Vignaud A., Belhadj K., Baranes L., Haioun C., Lin C., Rahmouni A. Whole-body diffusion-weighted imaging in Hodgkin lymphoma and diffuse large B-cell lymphoma // Radiographics. 2015. Vol. 35. P. 747–764. https://doi.org/10.1148/rg.2015140145.

30. Younes A., Hilden P., Coiffier B., Hagenbeek A., Salles G., Wilson W. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017) // Ann. Oncol. 2017. Vol. 28. P. 1436–1447. https://doi.org/10.1093/annonc/mdx097.

31. Bernstine H., Domachevsky L., Nidam M., Goldberg N., Abadi-Korek I., Shpilberg O., Groshar D. 18 F-FDG PET/MR imaging of lymphoma nodal target lesions: Comparison of PET standardized uptake value (SUV) with MR apparent diffusion coefficient (ADC) // Medicine (Baltimore). 2018. Vol. 97. e0490. https://doi.org/10.1097/MD.0000000000010490.


Review

For citations:


Kharuzhyk S.A., Zhavrid E.A., Dziuban A.V., Sukolinskaja E.V., Kalenik O.A. Comparison of the diagnostic effectiveness of whole body magnetic resonance imaging with diffusion weighted imaging and positron emission tomography/computed tomography in determining tumor response in lymphoma after the end of chemotherapy: Minsk scaleand Deauville scale. Diagnostic radiology and radiotherapy. 2020;11(1):78-92. (In Russ.) https://doi.org/10.22328/2079-5343-2020-11-1-78-92

Views: 1756


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)