Рossibilities of automatic systems in interpretation of lung X-rays in patients with suspicion for round formations
https://doi.org/10.22328/2079-5343-2020-11-1-46-51
Abstract
About the Authors
P. V. GavrilovRussian Federation
Pavel V. Gavrilov
St. Petersburg
U. A. Smolnikova
Russian Federation
Uliana A. Smolnikova
St. Petersburg
References
1. Tyurin I.E. Radiological diagnostics in the Russian Federation in 2016. Herald of radiology and radiology, 2017, Vol. 98, No. 4, рр. 219–226 (In Russ.)
2. Luchkevich V.S., Hasanova E.A. The trends of the epidemiological situation of tuberculosis in Russia at the present stage (review). Medical Alliance, 2016, No. 3, рр. 20–23 (In Russ.)
3. Phthisiatry. National clinical guidelines / ed. P. K. Yablonsky. Moscow: GEOTAR-Media, 2015, 240 р. (In Russ.)
4. Yablonskij P.K., Vasil’eva I.A., Ergeshov A.E. Clinical recommendations for the diagnosis and treatment of respiratory tuberculosis in adults. Moscow, 2013 (In Russ.)
5. Koreckaya N.M., Narkevich A.N. Newly diagnosed pulmonary tuberculosis in individuals who comply with and violate the prescribed timeframe for fluorosurveys in an epidemically unfavorable region. Tuberculosis and lung diseases, 2013, Vol. 90, No. 9, рр. 21–24 (In Russ.)
6. Gavrilov P., Ushkov A, Smol’nikova U. Detection of lumps in the lungs with digital X-ray: the role of the work experience of the radiologist. Medical Alliance, 2019, No. 2, рр. 51–56 (In Russ.)
7. Yerushalmy J. et al. The role of dual reading in mass radiography // American Review of Tuberculosis. 1950. Vol. 61. Р. 443–464.
8. Nakamura K. et al. Studies on the diagnostic value of 70 mm radiophotograms by mirror camera and the reading ability of physicians // Kekkaku. 1970. Vol. 45. Р. 121–128.
9. Morozov S.P., Vladzimirskij A.V., Ledihova N.V., Sokolina I.A., Kul’berg N.S., Gombolevskij V.A. Evaluation of the diagnostic accuracy of the screening system of pulmonary tuberculosis based on artificial intelligence. Tuberculosis and lung diseases, 2018, Vol. 95, No. 8, рр. 42–49 (In Russ.)
10. Lakhani Р. et al. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks // Radiology. 2017. Vol. 284, Iss. 2. Р. 574–582.
11. Jaeger S. et al. Automatic Tuberculosis Screening Using Chest Radiographs // IEEE transactions on medical imaging. 2014. Vol. 33, Iss. 2. P. 233–245.
12. Gavrilov P.V., Baulin I.A., Lukina O.V. Standardized interpretation and control of identified single lung formations using the Lung Imaging Reporting and Data System (Lung-RADS™). Medical Alliance, 2017, No. 3, рр. 17–27 (In Russ)
13. Garland L.H. On the reliability of roentgen survey procedures // American Journal of Rentgenology and Radium Therapeutic Nuclear Medicine. 1950. Vol. 64. Р. 32–41.
14. Garland L.H. Studies on the accuracy of diagnostic procedures // American Journal of Rentgenology and Radium Therapeutic Nuclear Medicine. 1959. Vol. 82. Р. 25–38.
15. Newell R.R. Chamberlain WE. Rigler L. Descriptive classification of pulmonary shadows: a revelation of unreliability in the roentenographic diagnosis of tuberculosis // American Review of Tuberculosis. 1954. Vol. 69. Р. 566–584.
16. Sone S. et al. Characteristics of small lung cancers invisible on conventional chest radiography and detected by population based screening using spiral CT // The British journal of radiology. 2000. Vol. 73. No. 866. Р. 137–145.
17. Dobbins J.T. et al. Digital tomosynthesis of the chest for lung nodule detection: Interim sensitivity results from an ongoing NIH‐sponsored trial // Medical physics. 2008. Vol. 35. No. 6. Part 1. Р. 2554–2557.
18. Meldo A.A., Utkin L.V., Trofimova T.N., Ryabinin M.A., Moiseenko V.M., Shelekhova K.V. Novel approaches to development of artificial intelligence algorithms in the lung cancer diagnostics // Diagnostic radiology and radiotherapy 2019. Vol. 10. No. 1. pp. 8–18 (In Russ.) DOI: 10.22328/2079-5343-2019-10-1-8-18.
Review
For citations:
Gavrilov P.V., Smolnikova U.A. Рossibilities of automatic systems in interpretation of lung X-rays in patients with suspicion for round formations. Diagnostic radiology and radiotherapy. 2020;11(1):46-51. (In Russ.) https://doi.org/10.22328/2079-5343-2020-11-1-46-51