Detection of excess sodium in the myocardium under conditions of sodium loading using dual-energy computed tomography
https://doi.org/10.22328/2079-5343-2020-11-1-52-58
Abstract
About the Authors
D. O. DragunovRussian Federation
Dmitriy O. Dragunov
Moscow
E. S. Pershina
Russian Federation
Ecatherina S. Pershina
Moscow
A. V. Sokolova
Russian Federation
Anna V. Sokolova
Moscow
M. F. Proskurina
Russian Federation
Marina F. Proskurina
Moscow
G. P. Arutyunov
Russian Federation
Gregory P. Arutyunov
Moscow
V. M. Mitrokhin
Russian Federation
Vadim M. Mitrokhin
Moscow
References
1. Laffer C.L. et al. Hemodynamics and Salt-and-Water Balance Link Sodium Storage and Vascular Dysfunction in Salt-Sensitive SubjectsNovelty and Significance // Hypertension. 2016. Vol. 68, No. 1. P. 195–203. doi: 10.1161/HYPERTENSIONAHA.116.07289.
2. Arutyunov G.P. et al. The effect of the level of total sodium deposited in the myocardium on its stiffness. Therapeutic Archive, 2017, Vol. 89, No. 1, рр. 32–37 (In Russ.) doi: 10.17116/terarkh201789132-37.
3. Oh Y.S. et al. National Heart, Lung, and Blood Institute Working Group Report on Salt in Human Health and Sickness // Hypertension. 2016. Vol. 68, No. 2. P. 281–288. doi: 10.1161/HYPERTENSIONAHA.116.07415
4. Kwon T.-H. et al. Regulation of collecting duct AQP3 expression: response to mineralocorticoid // Am. J. Physiol.— Ren. Physiol. 2002. Vol. 283, No. 6. P. F1403–F1421. doi: 10.1152/ajprenal.00059.2002
5. Kim G.-H. et al. The thiazide-sensitive Na–Cl cotransporter is an aldosteroneinduced protein // Proc. Natl. Acad. Sci. U. S. A. 1998. Vol. 95, No. 24. P. 14552–14557.
6. Patten R.D., Hall-Porter M.R. Small Animal Models of Heart Failure Development of Novel Therapies, Past and Present // Circ. Heart Fail. 2009. Vol. 2, No. 2. P. 138–144. doi: 10.1161/CIRCHEARTFAILURE.108.839761
7. Karçaaltıncaba M., Aktaş A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications // Diagn. Interv. Radiol. Ank. Turk. 2011. Vol. 17, No. 3. P. 181–194. doi:10.4261/1305-3825.DIR.3860–10.0
8. Siegel M.J. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology // J. Comput. Assist. Tomogr. 2016. Vol. 40, No. 6. P. 841–845. doi: 10.1097/RCT.0000000000000531.
9. Foley W.D. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity // J. Comput. Assist. Tomogr. 2016. Vol. 40, No. 6. P. 846–850. doi: 10.1097/RCT.0000000000000539
10. De Cecco C.N. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 3: Vascular, Cardiac, Pulmonary, and Musculoskeletal Applications // J. Comput. Assist. Tomogr. 2017. Vol. 41, No. 1. P. 1–7. doi: 10.1097/RCT.0000000000000538
11. Biondi M. et al. Water/cortical bone decomposition: A new approach in dual energy CT imaging for bone marrow oedema detection. A feasibility study // Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. AIFB. 2016. Vol. 32, No. 12. P. 1712–1716. doi: 10.1016/j.ejmp.2016.08.004.
12. Goo H.W., Goo J.M. Dual-Energy CT: New Horizon in Medical Imaging // Korean J. Radiol. 2017. Vol. 18, No 4. P. 555–569. doi: 10.3348/kjr.2017.18.4.555.
13. Hawkes D.J., Jackson D.F., Parker R.P. Tissue analysis by dual-energy computed tomography // Br. J. Radiol. 1986. Vol. 59, No. 702. P. 537–542. doi: 10.1259/0007-1285-59-702-537.
14. Patino M. et al. Material Separation Using Dual-Energy CT: Current and Emerging Applications // Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2016. Vol. 36, No. 4. P. 1087–1105. doi: 10.1148/rg.2016150220.
15. Artz N.S. et al. Quantification of hepatic steatosis with dual-energy computed tomography: comparison with tissue reference standards and quantitative magnetic resonance imaging in the ob/ob mouse // Invest. Radiol. 2012. Vol. 47, No. 10. P. 603–610. doi: 10.1097/RLI.0b013e318261fad0.
16. Morgan D.E. et al. Differentiation of high lipid content from low lipid content adrenal lesions using single-source rapid kilovolt (peak)-switching dual-energy multidetector CT // J. Comput. Assist. Tomogr. 2013. Vol. 37, No. 6. P. 937–943. doi: 10.1097/RCT.0b013e3182aaf996.
17. Mileto A. et al. Dual-energy multidetector CT for the characterization of incidental adrenal nodules: diagnostic performance of contrast-enhanced material density analysis // Radiology. 2015. Vol. 274, No. 2. P. 445–454. doi: 10.1148/radiol.14140876.
Review
For citations:
Dragunov D.O., Pershina E.S., Sokolova A.V., Proskurina M.F., Arutyunov G.P., Mitrokhin V.M. Detection of excess sodium in the myocardium under conditions of sodium loading using dual-energy computed tomography. Diagnostic radiology and radiotherapy. 2020;11(1):52-58. (In Russ.) https://doi.org/10.22328/2079-5343-2020-11-1-52-58