Metabolic changes in the brain in children with cognitive epileptiform disintegration revealed by proton magnetic resonance spectroscopy
https://doi.org/10.22328/2079-5343-2021-12-2-36-40
Abstract
Introduction. Cognitive epileptiform disintegration is a complex of disorders of higher mental functions in a person with a pathological EEG pattern characteristic of epilepsy. In this case, the patient should not have epileptic seizures or a history of single seizures is allowed. The study of biomarkers of the pathological condition under consideration using proton magnetic resonance spectroscopy as indicators that can be objectively evaluated and measured determines the practical relevance of this work.
The aim of the study was to determine the diagnostic significance of the metabolites of N-acetylaspartate, choline and creatine according to proton magnetic resonance spectroscopy in the brain of children with cognitive epileptiform disintegration.
Material and methods. Using routine MRI and proton magnetic resonance spectroscopy, 6 children with a diagnosis of mental retardation, cognitive epileptiform disintegration at the age of 2 to 7 years (5 boys; 1 girl) were examined. The patients underwent EEG followed by identification of a typical QED pattern. All children had no history of seizures characteristic of epilepsy. Results. А decrease in the ratio of the concentration of NAA/Cr (p<0,05) in the temporal lobes on both sides and the hippocampus on the right was revealed, due to a decrease in the concentration of N-acetylaspartate. There is also an increase in the Cho/NAA concentration ratio (p<0,05) in the hippocampus on the right, and an increase in the Cho/Cr concentration ratio (p<0,05) in the prefrontal cortex, postcentral gyri on both sides, the temporal lobe on the right and the region of the inner capsule on the left, by increasing the concentration of choline.
Conclusions. Тhe obtained data suggest that changes in neurometabolism in the cholinergic system in children with cognitive epileptiform disintegration are possibly caused by damage to neuronal connections, mainly in the hippocampus and temporal lobes.
About the Authors
А. М. SergeevRussian Federation
Artur M. Sergeev
St. Petersburg
A. V. Pozdnyakov
Russian Federation
Alexander V. Pozdnyakov
St. Petersburg
E. E. Atamanova
Russian Federation
Elina E. Atamanova
St. Petersburg
O. F. Pozdnyakova
Russian Federation
Olga F. Pozdnyakova
St. Petersburg
D. A. Malekov
Russian Federation
Damir A. Malekov
St. Petersburg
S. V. Grechaniy
Russian Federation
Severin V. Grechaniy
St. Petersburg
References
1. Mukhin K.Yu. Cognitive epileptiform disintegration: definition, diagnosis, therapy. Russian Journal of Child Neurology, 2012, Vol. 7, No. 1, рр. 3–20 (In Russ.)
2. Parker A., Ferrie C., Keevil S., Newbold M., Cox T., Maisey M., Robinson R. Neuroimaging and spectroscopy in children with epileptic encephalopathies // Archives of Disease in Childhood. 1998. Vol. 79, No. 1. Р. 39–43. doi: 10.1136/adc.79.1.39.
3. Cendes F., Knowlton R., Novotny E., Min L., Antel S., Sawrie S., Laxer K., Arnold D. Magnetic Resonance Spectroscopy in Epilepsy: Clinical Issues // Epilepsia. 2002. Vol. 43. Р. 32–39. doi: 10.1046/j.1528-1157.2002.043s1032.x.
4. Cavazos J.E., Cross D.J. The role of synaptic reorganization in mesial temporal lobe epilepsy // Epilepsy Behavior. 2006. Vol. 8, No. 3. Р. 483–493. doi: 10.1016/j.yebeh.2006.01.011.
5. Oz G., Alger J.R., Barker P.B., Bartha R., Bizzi A., Boesch C., Bolan P.J., Brindle K.M., Cudalbu C., Dinçer A., Dydak U., Emir U.E., Frahm J., González R.G., Gruber S., Gruetter R., Gupta R.K., Heerschap A., Henning A., Hetherington H.P., Howe F.A., Hüppi P.S., Hurd R.E., Kantarci K., Klomp D.W., Kreis R., Kruiskamp M.J., Leach M.O., Lin A.P., Luijten P.R., Marjańska M., Maudsley A.A., Meyerhoff D.J., Mountford C.E., Nelson S.J., Pamir M.N., Pan J.W., Peet A.C., Poptani H., Posse S., Pouwels P.J., Ratai E.M., Ross B.D., Scheenen T.W., Schuster C., Smith I.C., Soher B.J., Tkáč I., Vigneron D.B., Kauppinen R.A. MRS Consensus Group. Clinical proton MR spectroscopy in central nervous system disorders // Radiology. 2014. Vol. 270, No. 3. Р. 658–679. doi: 10.1148/radiol.13130531.
6. Morgane P.J., Galler J.R., Mokler D.J. A review of systems and networks of the limbic forebrain/limbic midbrain // Progress in Neurobiology. 2005. Vol. 75, No. 2. Р. 143–160. doi: 10.1016/j.pneurobio.2005.01.001.
7. Critchley H.D., Simmons A., Daly E.M., Russell A., van Amelsvoort T., Robertson D.M., Glover A., Murphy D.G. Prefrontal and medial temporal correlates of repetitive violence to self and others // Biological Psychiatry. 2000. Vol. 47, No. 10. Р. 928–934; doi: 10.1016/s0006-3223(00)00231-6.
Review
For citations:
Sergeev А.М., Pozdnyakov A.V., Atamanova E.E., Pozdnyakova O.F., Malekov D.A., Grechaniy S.V. Metabolic changes in the brain in children with cognitive epileptiform disintegration revealed by proton magnetic resonance spectroscopy. Diagnostic radiology and radiotherapy. 2021;12(2):36-40. (In Russ.) https://doi.org/10.22328/2079-5343-2021-12-2-36-40