Preview

Diagnostic radiology and radiotherapy

Advanced search

The effect of corpus callosum abnormalities on myelin development in the fetal brain using the fast macromolecular proton fraction mapping

https://doi.org/10.22328/2079-5343-2022-13-2-50-58

Abstract

INTRODUCTION: There is evidence, indicate early compensatory axonal remodeling connections in the prenatal period, providing a favorable neurological outcome in isolated anomalies of the corpus callosum (CC). Mapping of the macromolecular proton fraction (MPF) is proven method of quantitative determination of myelin, which has been adapted for prenatal studies.
OBJECTIVE: To investigate the relationship between CC anomalies and prenatal myelination of the brain using the fast macromolecular proton fraction (MPF) mapping.
MATERIALS AND METHODS: Fetal MR imaging were performed on a 1.5 scanner (Achieva, Philips) using a 16-channel body coil. Of 66 fetal brains MRI, 12 studies were selected with MT abnormalities (22.8±2.8, 19–28.5 WG) and 21 without brain pathology (23.1±2.3, 20–29.5 WG). The images were analyzed according to structural MRI data (T2-Ssh and T1-GE, EPI, DWI, MYUR, T2-BFE-DYN) by two experienced radiologists. Fast-3D-MPF scan protocol with the MPF maps reconstruction was carried out according to a specialized protocol (open-source software: https://www.macroatomicmri.org /). Quantitative data were obtained by choosing the region of interest (ROI) in numerous brain structures bilateral (bridge, medulla oblongata, thalamus, cerebellum, and cerebral hemispheres). Statistics: distinctions between the groups and structures were assessed using repeated-measures analysis of covariance (ANCOVA), Pearson correlation analysis.
RESULTS: MPF was significantly increased in the CC anomalies group as compared to controls in the medulla (3.26±0.63% vs. 2.75±0.59%, р=0.001) and cerebellum (2.02±0.55% vs. 1.76±0.34%, р=0.006). In hemispheres significant correlation with GA was observed in CC anomalies group (r=0.81, р=0.002), but was absent in controls (r=0.32, р=0.16).
CONCLUSION: Primary observed MPF increase in the medulla and cerebellum as well as the dependence of the large hemispheres myelination on gestational age indicates that fetal cerebral matter undergoes early compensatory axonal remodeling in the cases of the interhemispheric connections’ reduction.

About the Authors

A. M. Korostyshevskaya
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

 Dr. of Sci. (Med.), leading researcher of the laboratory of MRТ technologies, Head of the diagnostic department

Novosibirsk, Russia,

SPIN 2888–6207 



A. M. Gornostaeva
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

 junior research assistant

Novosibirsk, Russia

SPIN 4714–9221 



Ya. O. Isaeva
Tomsk National State Research University
Russian Federation

 junior research assistant

Tomsk, Russia

SPIN 8420–0151 



E. D. Petrovskiy
International Tomography Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

 research associate

Novosibirsk, Russia

SPIN 8420–0151 



V. L. Yarnykh
University of Washington, Seattle; Tomsk National State Research University
Russian Federation

 Cand. of Sci. (Chim.), professor, Department of Radiology

WA, USA 



References

1. Aboitiz F., Scheibel A.B., Fisher R.S., Zaidel E. Fiber composition of the human corpus callosum // Brain Research. 1992, Vol. 598. № 1–2. P. 143–153. doi: 10.1016/0006-8993(92)90178-c

2. Meidan R., Bar-Yosef O., Ashkenazi I., Yahal O., Berkenstadt M., Hoffman C., Tsur A., Achiron R., Katorza E. Neurodevelopmental outcome following prenatal diagnosis of a short corpus callosum // Prenatal Diagnosis. 2019. Vol. 39, № 6. Р. 477–483. doi: 10.1002/pd.5460

3. Schell-Apacik C.C., Wagner K., Bihler M., Ertl-Wagner B., Heinrich U., Klopocki E., Kalscheuer V.M., Muenke M., Voss H. Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients // American Journal of Medical Genetics. 2008. Vol. 146A. № 19. Р. 2501–2511. doi: 10.1002/ajmg.a.32476

4. Corrigan N.M., Yarnykh V.L., Hippe D.S., Owen J.P., Huber E., Zhaoa T.C., Kuhla P.K. Development in cerebral gray and white matter during adolescence and late childhood // NeuroImage. 2021. Vol. 227. P. 117678. doi: 10.1016/j.neuroimage.2020.

5. Vasudevan C., McKechnie L., Levene M. Long-term outcome of antenatally diagnosed agenesis of corpus callosum and cerebellar malformations // Seminars in Fetal and Neonatal Medicine. 2012. Vol. 17, Nо. 5. Р. 295–300. doi: 10.1016/j.siny.2012.07.001

6. Sotiriadis A., Makrydimas G. Neurodevelopment after prenatal diagnosis of isolated agenesis of the corpus callosum: an integrative review // American Journal of obstetrics and gynecology. 2012. Vol. 206. Р. 337. e1–5. doi: 10.1016/j.ajog.2011.12.024

7. Harreld J.H., Bhore R., Chason D.P., Twickler D.M. Corpus callosum length by gestational age as evaluated by fetal MR imaging // American journal of neuroradiology. 2010. Vol. 32, Nо. 3. Р. 490–494. doiI: 10.3174/ajnr.A2310

8. Rakic P., Yakovlev P.I. Development of the corpus callosum and cavum septi in man // The journal of comparative neurology. 1968. Vol. 132. Р. 45–72. doi: 10.1002/cne.901320103

9. Sherr E., Dobyns W.B. ACC: Callosal Agenesis as a Window into Common Neurodevelopmental Disorders. San Francisco: University of California (https://grantome.com/grant/NIH/R01-NS058721–07A1, дата обращения 01.06.2022).

10. Lábadi B., Beke A.M. Behavioral and cognitive profile of corpus callosum agenesia — Review // Ideggyogy Sz. 2016. Vol. 69, Nо. 11–12. Р. 373–379. doi: 10.18071/isz.69.0373

11. Barkovich A.J. Congenital malformations of the brain and skull in pediatric neuroimaging. Lippincot: Williams & Wilkians, 2000. Р. 251–381.

12. Yarnykh V.L., Prihod’ko I.Y., Savelov A.A., Korostyshevskaya A.M. Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping // American journal of neuroradiology. 2018. Vol. 39, Nо. 7. Р. 1341–1348. doi: 10.3174/ajnr. A5668.

13. Kisel A.A, Naumova A.V.1, Yarnykh V.L. Macromolecular proton fraction as a myelin biomarker: principles, validation, and applications // Frontiers in neuroscience. 2022. Vol. 9, Nо. 6. Р. 819–912. doi: 10.3389/fnins.2022.819912.

14. Korostyshevskaya A.M., Prihod’ko I.Y., Savelov A.A., Yarnykh V.L. Direct comparison between apparent diffusion coefficient and macromolecular proton fraction as quantitative biomarkers of the human fetal brain maturation // Journal of magnetic resonance imaging. 2019. Vol. 50, Nо. 1. Р. 52–61. doi: 10.1002/jmri.26635.

15. Yarnykh V., Knipenberg N., Tereshchenkova O. Quantitative assessment of pediatric brain myelination in a clinical setting using macromolecular proton fraction // Proc. 26th annual meeting ISMRM. Paris, 2018. (https://archive.ismrm.org/2018/0525.html, дата обращения 01.06.2022).

16. Yarnykh V.L. Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement // Magnetic resonance in medicine. 2012. Vol. 68, Nо. 1. Р. 166–178. doi: 10.1002/mrm.23224.

17. Yarnykh V.L. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping // Magnetic resonance in medicine. 2016. Vol. 75, Nо. 5. Р. 2100–2106. doi: 10.1002/mrm.25811.


Review

For citations:


Korostyshevskaya A.M., Gornostaeva A.M., Isaeva Ya.O., Petrovskiy E.D., Yarnykh V.L. The effect of corpus callosum abnormalities on myelin development in the fetal brain using the fast macromolecular proton fraction mapping. Diagnostic radiology and radiotherapy. 2022;13(2):50-58. (In Russ.) https://doi.org/10.22328/2079-5343-2022-13-2-50-58

Views: 695


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)