Preview

Diagnostic radiology and radiotherapy

Advanced search

Cardiac positron emission tomography in prediction of the clinical course of chronic thromboembolic pulmonary hypertension: prospective cohort study

https://doi.org/10.22328/2079-5343-2022-13-4-65-74

Abstract

INTRODUCTION: During the development of CTEPH maladaptive mechanisms in the right ventricle are accompanied by disturbances in myocardial energy metabolism and perfusion. These changes can be assessed visually and quantitatively using the molecular imaging method — PET with [18F]-FDG and [13N]-NH3.

OBJECTIVE: Using cardiac PET/CT investigate the relationship between perfusion and metabolism of the right ventricular myocardium and the results of other instrumental examination methods in patients with CTEPH of different severity, as well as to calculate the threshold PET values to determine the group of patients with an unfavorable clinical course of the disease.

MATERIALS AND METHODS: The study included 36 patients with a verified diagnosis of CTEPH, who were examined using a standard diagnostic protocol. Patients underwent cardiac PET/CT examinations with two radiopharmaceuticals: with [18F]-FDG to study the metabolism of the ventricular myocardium and with [13N]-NH3 to assess cardiac perfusion. For each radiopharmaceutical semi-quantitative accumulation indices (SUV) and the ratio of the levels of radiopharmaceutical uptake in the right and left ventricles (SUV RV/SUV LV) were obtained. Statistics: Shapiro-Wilk test, Student’s t-test, and Mann-Whitney U-test, Pearson correlation analysis, linear regression analysis, ROC analysis.

RESULTS: The level of [18F]-FDG accumulation in the right ventricular myocardium is higher in patients with a high functional class of PH than in groups I, II (p<0.01). All indicators of SUV RV/SUV LV for [18F]-FDG demonstrate a direct linear relation-ship with the level of mean PAP (r=0.691, p<0.0001), PVR (r=0.715, p<0.0001), right ventricular size (r=0.658, p<0.0001), PASP (r=0.581, p<0.001) and inverse linear relationship with the functional parameters of the right ventricle CI (r=–0.555, p=0.001), CO (r=–0.488, p=0.005), TAPSE (r=–0.552, p<0.001), TAVS (r=–0.537, p<0.001), and SvO2 (r=–0.666, p<0.0001). A correlation was found between the accumulation of [13N]-NH3 and the main hemodynamic parameters used to assess the severity of the disease (СI, SvO2). The threshold values of [18F]-FDG and [13N]-NH3 accumulation indices have been obtained, which with high sensitivity (69.2–83.3%), specificity (68.4–94.7%) and diagnostic accuracy (0.73–0.83) make it possible to identify patients with a low cardiac index and an unfavorable prognosis.

DISCUSSION: The obtained results confirm the presence of glucose hypermetabolism in right ventricular cardiomyocytes in the development of pulmonary hypertension and the association of these metabolic changes with the severity of PH. A significant correlation was demonstrated between the accumulation of both radiopharmaceuticals in the heart and the results of other examination methods characterizing the severity of disease and the prognosis of patients with CTEPH. Using a non-invasive PET/CT procedure, threshold values of PET parameters were obtained, which in the future can be used to identify patients with an unfavorable clinical prognosis.

CONCLUSION: Cardiac PET/CT with [18F]-FDG and [13N]-NH3 is a promising non-invasive imaging technique that can be used to study metabolic and perfusion changes in the right ventricular myocardium in CTEPH, as well as to identify patients with a high risk of adverse events.

About the Authors

E. R. Molokova
Almazov National Medical Research Centre
Russian Federation

Evgeniia R. Molokova — MD, 2-year postgraduate student of the Department of Nuclear Medicine and Radiation Technology with clinic

Saint Petersburg, 2 Akkuratova street, 197341



M. A. Simakova
Almazov National Medical Research Centre
Russian Federation

Maria A. Simakova — Dr. of Sci. (Med.), Senior Researcher of the Noncoronary Heart Disease Department

Saint Petersburg, 2 Akkuratova street, 197341



O. M. Moiseeva
Almazov National Medical Research Centre
Russian Federation

Olga M. Moiseeva — Dr. of Sci. (Med.), Professor, Head and Chief Researcher of the Noncoronary Heart Disease Department, Director of the Heart and Vascular Institute

Saint Petersburg, 2 Akkuratova street, 197341



D. V. Ryzhkova
Almazov National Medical Research Centre
Russian Federation

Daria V. Ryzhkova — Dr. of Sci. (Med.), Professor of RAS, Head of the Department of Nuclear Medicine and Radiation Technology with clinic, Chief Researcher of the Department of Nuclear Medicine and Theranostics

Saint Petersburg, 2 Akkuratova street, 197341



References

1. Kim N.H., Delcroix M., Jais X., Madani M.M., Matsubara H., Mayer E. et al. Chronic thromboembolic pulmonary hypertension // European Respiratory Journal. 2019. Vol. 53, No. 1. Р. 1801915. doi: 10.1183/13993003.01915-2018.

2. Lang I.M., Pesavento R., Bonderman D. et al. Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding // European Respiratory Journal. 2013. Vol. 41. Р. 462–468. doi: 10.1183/09031936.00049312.

3. von Siebenthal C., Aubert J-D., Mitsakis P., Yerly P., Prior J.O., Nicod L.P. Pulmonary Hypertension and Indicators of Right Ventricular Function // Front. Med. 2016. Vol. 3. Р. 23. doi: 10.3389/fmed.2016.00023.

4. Delcroix M., Vonk Noordegraaf A., Fadel E., Lang I., Simonneau G., Naeije R. Vascular and right ventricular remodelling in chronic thromboembolic pulmonary hypertension // Eur. Respir. J. 2013. Vol. 41, No. 1. Р. 224–232. doi: 10.1183/09031936.00047712.

5. Matthews D.T., Hemnes A.R. Current concepts in the pathogenesis of chronic thromboembolic pulmonary hypertension // Pulm Circ. 2016. Vol. 6, No. 2. Р. 145–154. doi: 10.1086/686011

6. Farrell C., Balasubramanian A., Hays A.G., Hsu S., Rowe S., Zimmerman S.L. et al. A Clinical Approach to Multimodality Imaging in Pulmonary Hypertension // Front. Cardiovasc. Med. 2022. Vol. 8. Р. 794706. doi: 10.3389/fcvm.2021.794706.

7. Xu W., Janocha A.J., Erzurum S.C. Metabolism in pulmonary hypertension // Annu Rev Physiol. 2021. Vol. 83. Р. 551–576. doi: 10.1146/annurev-physiol-031620-123956.

8. Farha S., Comhair S., Hou Y., Park M.M., Sharp J., Peterson L. et al. Metabolic endophenotype associated with right ventricular glucose uptake in pulmonary hypertension // Pulmonary Circulation. 2021. Vol. 11. Р. 1–12. doi: 10.1177/20458940211054325

9. Koop A.C., Bossers G.P.L., Ploegstra M-J., Hagdorn Q.A.J., Berger R.M.F., Silljé H.H.W. et al. Metabolic Remodeling in the Pressure-Loaded Right Ventricle: Shifts in Glucose and Fatty Acid Metabolism-A Systematic Review and Meta-Analysis // J. Am. Heart Assoc. 2019. Vol. 8, No. 21. Р. e012086. doi: 10.1161/JAHA.119.012086.

10. Piao L., Fang Y.H., Cadete V.J., Wietholt C., Urboniene D., Toth P.T. et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle // J. Mol. Med. (Berl). 2010. Vol. 88, No. 1. Р. 47–60. doi: 10.1007/s00109-009-0524-6.

11. Oikawa M., Kagaya Y., Otani H., Sakuma M., Demachi J., Suzuki J. et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol // J Am Coll Cardiol. 2005. Vol. 45. Р. 1849–1855. doi: 10.1016/j.jacc.2005.02.065.

12. Saygin D., Highland K.B., Farha S., Park M., Sharp J., Roach E.C. et al. Metabolic and functional evaluation of the heart and lungs in pulmonary hypertension by gated 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography // Pulm. Circ. 2017. Vol. 7. Р. 428–438. doi: 10.1177/2045893217701917.

13. Tatebe S., Fukumoto Y., Oikawa-Wakayama M., Sugimura K., Satoh K., Miura Y. et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study // Eur. Heart J. Cardiovasc Imaging. 2014. Vol. 15. Р. 666–672. doi: 10.1093/ehjci/jet276.

14. Kluge R., Barthel H., Pankau H., Seese A., Schauer J., Wirtz H. et al. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension // J. Nucl. Med. 2005. Vol. 46, No. 1. Р. 25–31.

15. Oguz M., Kivrak T., Sunbul M., Dede F., Yildizeli B., Mutlu B. Diagnostic modality for evaluation of right ventricle in chronic thromboembolic pulmonary hypertension patients // Int. J. Cardiovasc. Acad. 2019. Vol. 5. Р. 152–158. doi: 10.4103/IJCA.IJCA_35_19.

16. Ahmadi A., Thornhill R.E., Pena E., Renaud J.M., Promislow S., Chandy G. et al. Effects of Riociguat on Right Ventricular Remodelling in Chronic Thromboembolic Pulmonary Hypertension Patients: A Prospective Study // Can. J. Cardiol. 2018. Vol. 34, No. 9. doi: 10.1016/j.cjca.2018.06.007.

17. Molokova E.R., Simakova M.A., Moiseeva O.M., Ryzhkova D.V. Evaluation of right ventricular perfusion and metabolism in chronic thromboembolic pulmonary hypertension by positron emission tomography // REJR. 2022. Vol. 12, No. 2. Р. 74–84. doi: 10.21569/2222-7415-2022-12-2-74-84. (In Russ.).

18. Vitale G.D., deKemp R.A., Ruddy T.D., Williams K., Beanlands R.S.B. Myocardial Glucose Utilization and Optimization of 18F-FDG PET Imaging in Patients with Non– Insulin-Dependent Diabetes Mellitus, Coronary Artery Disease, and Left Ventricular Dysfunction // Journal of Nuclear Medicine. 2001. Vol. 42, No. 12. Р. 1730–1736.

19. Li W., Wang L., Xiong C.M., Yang T., Zhang Y., Gu Q. et al. The Prognostic Value of 18F-FDG Uptake Ratio Between the Right and Left Ventricles in Idiopathic Pulmonary Arterial Hypertension // Clin. Nucl. Med. 2015. Vol. 40, No. 11. Р. 859–863. doi: 10.1097/RLU.0000000000000956. PMID: 26359560.

20. Condliffe R., Kiely D.G., Gibbs J.S.R., Corris P.A., Peacock A.J., Jenkins D.P. et al. Prognostic and aetiological factors in chronic thromboembolic pulmonary hypertension // European Respiratory Journal. 2009. Vol. 33. Р. 332–338. doi: 10.1183/09031936.00092008.

21. Kazimierczyk R., Szumowski P., Nekolla S.G. et al. Prognostic role of PET/MRI hybrid imaging in patients with pulmonary arterial hypertension // Heart. 2021. Vol. 107. Р. 54–60. doi: 10.1136/heartjnl-2020-316741.


Review

For citations:


Molokova E.R., Simakova M.A., Moiseeva O.M., Ryzhkova D.V. Cardiac positron emission tomography in prediction of the clinical course of chronic thromboembolic pulmonary hypertension: prospective cohort study. Diagnostic radiology and radiotherapy. 2022;13(4):65-74. (In Russ.) https://doi.org/10.22328/2079-5343-2022-13-4-65-74

Views: 622


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)