The role of 3D modeling in pancreas surgery: a review
https://doi.org/10.22328/2079-5343-2023-14-3-18-26
Abstract
INTRODUCTION: Surgical interventions on the pancreas are technically complex and are accompanied by a fairly large number of complications, which is largely due to the variant anatomy of the pancreas.
OBJECTIVE: The aim of this paper is to evaluate the possibilities of 3D modeling in the surgical treatment of pancreatic diseases according to the literature.
MATERIALS AND METHODS: Literature searched in Russian and English for the period from 2017 to 2022 in Medline/PubMed, RSCI/Elibrary, CyberLeninka, Google Scholar databases. The search was conducted on the keywords: pancreas, chronic pancreatitis, pancreatic cancer, pancreatic resection, computed tomography, 3-D modeling, 3-D reconstruction, surgical planning, surgical intervention, pancreas, chronic pancreatitis, pancreas cancer, pancreatectomy, computed tomography, 3-D modeling, 3D reconstruction, surgical planning.
RESULTS: 49 publications on various aspects of the use of 3D modeling in pancreatic surgery were included in the final analysis. The diagnostic value of building three-dimensional models in assessing the resectability of pancreatic tumors, identifying individual topographic and anatomical features of the pancreatobiliary zone, which should be taken into account during surgery to avoid intra- and postoperative complications, is shown. Examples of a description based on 3D modeling of rare vascular anomalies and cysts that are not visualized according to standard computed tomography in patients who are scheduled for pancreatic surgery are presented. The importance of postoperative 3D modeling of the pancreas for assessing the adequacy of the surgical intervention and early detection of possible complications of the operation is indicated.
CONCLUSION: 3D modeling is an innovative and promising diagnostic method that allows increasing the information content of standard computed tomography in pancreatic surgery. 3D models make it possible to select patients for pancreatic resection and substantiate the most optimal surgical strategy. In the future, we should expect an improvement in the results of surgical treatment of pancreatic tumors and complicated pancreatitis.
About the Authors
A. S. KudashkinaRussian Federation
Aleksandra S. Kudashkina — Assistant of the Department of Oncology of the St. Petersburg State
University; Head of the Magnetic Resonance Imaging Department of the City Mariinsky Hospital
St. Petersburg State University, 199034, St. Petersburg, Universitetskaya nab., 7–9
City Mariinsky Hospital, St. Petersburg, Liteyny Ave., 56
I. G. Kamyshanskaya
Russian Federation
Irina G. Kamyshanskaya — Dr. of Sci. (Med.), Associate Professor of the Department of Oncology of the St. Petersburg State University; Head of the Department of Radiation Diagnostics of the City Mariinsky Hospital
St. Petersburg State University, 199034, St. Petersburg, Universitetskaya nab., 7–9
City Mariinsky Hospital, St. Petersburg, Liteyny Ave., 56
V. M. Cheremisin
Russian Federation
Vladimir M. Cheremisin — Dr. of Sci. (Med.), Professor of the Department of Oncology
199034, Saint Petersburg, Universitetskaya nab., 6–8
K. V. Pavelets
Russian Federation
Konstantin V. Pavelets — Dr. of Sci. (Med.), Professor of Department of faculty surgery to them. Professor A. A. Rusanov, Saint Petersburg state pediatric medical
University, Department of General surgery; head of the surgical Department of the «City Mariinsky hospital»
Saint Petersburg state pediatric medical University, 194100, Saint Petersburg, St. Litovskaya, 2
City Mariinsky hospital, 191014, Saint Petersburg, 56 Liteyny Ave
D. S. Rusanov
Russian Federation
Dmitry S. Rusanov — Cand. of Sci. (Med.), assistant of the Department of faculty surgery named after Prof. A. A. Rusanov of the Saint Petersburg state pediatric medical University; endoscopist of the City Mariinsky hospital
Saint Petersburg state pediatric medical University, 194100, Saint Petersburg, St. Litovskaya, 2
City Mariinsky hospital, 191014, Saint Petersburg, 56 Liteyny Ave
S. A. Kalyuzhnyy
Russian Federation
Sergey A. Kalyuzhnyy — surgeon
191014, Saint Petersburg, 56 Liteyny Ave
References
1. Kriger A.G., Pronin N.A., Dvukhzhilov M.V. Other Surgical view of the arterial anatomy of the pancreas. Annals of surgical hepatology, 2021, Vol. 26, No. 3, pp. 112–122 (In Russ.). doi: 10.16931/1995-5464.2021-3-112-122.
2. Alanentalo T., Hahn M., Willekens S.M.A., Ahlgren U. Mesoscopic Optical Imaging of the Pancreas-Revisiting Pancreatic Anatomy and Pathophysiology // Front Endocrinol. (Lausanne). 2021. Vol. 12. P. 633063. doi: 10.3389/fendo.2021.633063. PMID: 33746904.
3. Javed A.A., Young R.W.C., Habib J.R. et al. Cinematic Rendering: Novel Tool for Improving Pancreatic Cancer Surgical Planning // Curr. Probl. Diagn. Radiol. 2022. Vol. 51, No. 6. P. 878–883. doi: 10.1067/j.cpradiol.2022.04.001. PMID: 35595587.
4. Kumar H., DeSouza S.V., Petrov M.S. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review // Comput Methods Programs Biomed. 2019. Vol. 178. P. 319–328. doi: 10.1016/j.cmpb.2019.07.002. PMID: 31416559.
5. Zhang L., Sanagapalli S., Stoita A. Challenges in diagnosis of pancreatic cancer // World J. Gastroenterol. 2018. Vol. 24, No. 19. P. 2047–2060. doi: 10.3748/wjg.v24.i19.2047. PMID: 29785074.
6. Barat M., Dohan A., Gaujoux S. et al. Computed tomography features of acinar cell carcinoma of the pancreas // Diagn. Interv Imaging. 2020. Vol. 101, No. 9. P. 565–575. doi: 10.1016/j.diii.2020.02.007. PMID: 32146131.
7. Panchenkov D.N., Ivanov Yu.V., Kolsanov A.V. et al. Virtual 3D modeling in liver surgery. Bulletin of Surgery named after I. I. Grekov, 2019, Vol. 178, No. 5, pp. 74–80 (In Russ.). doi: 10.24884/0042-4625-2019-178-5-74-80.
8. Romashchenko P.N., Zheleznyak I.S., Maistrenko N.A., Blyumina S.G. A method for designing surgical access for adrenalectomy using 3D modeling. Tauride Medical and Biological Bulletin, 2020. Vol. 23, No. 2, pp. 165–171 (In Russ.). doi: 10.37279/2070-8092-2020-23-2-165-171.
9. Ballard D.H., Wake N., Witowski J. et al. Radiological Society of North America (RSNA) 3D Printing Special Interest Group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: abdominal, hepatobiliary, and gastrointestinal conditions // 3D Print Med. 2020. Vol. 6, No. 1. P. 13. doi: 10.1186/s41205-020-00065-6. PMID: 32514795.
10. Frohn J., Pinkert-Leetsch D., Missbach-Güntner J. et al. 3D virtual histology of human pancreatic tissue by multiscale phase-contrast X-ray tomography // J. Synchrotron. Radiat. 2020. Vol. 27, Pt 6. P. 1707–1719. doi: 10.1107/S1600577520011327. PMID: 33147198.
11. Boedecker C., Huettl F., Saalfeld P. et al. Using virtual 3D-models in surgical planning: workflow of an immersive virtual reality application in liver surgery // Langenbecks Arch. Surg. 2021. Vol. 406, No. 3. P. 911–915. doi: 10.1007/s00423-021-02127-7. PMID: 33710462.
12. Zelter P.M., Kolsanov A.V., Pyshkina Yu.S. Segmentation of focal liver lesions and virtual resection based on computed tomography data. Bulletin of Siberian Medicine, 2021, Vol. 20, No. 1, рр. 39–44 (In Russ.). doi: 10.20538/1682-0363-2021-1-39-44.
13. The state of oncological care for the population of Russia in 2021: ed. A. D. Kaprin, V. V. Starinsky, A. O. Shakhzadova. Moscow: MNIOI im. P.A. Gertsen — branch of the Federal State Budgetary Institution «NMITs Radiology» of the Ministry of Health of Russia, 2022. 239 p. (In Russ.).
14. Karmazanovsky G.G. Differential diagnosis and analysis of pancreatic cancer resectability using CT and MRI. Annals of HPB Surgery, 2019, Vol. 24, No. 3, рр. 22–35 (In Russ.)]. doi: 10.16931/1995-5464.2019322-35.
15. Kudryavtseva A.V., Bagnenko S.S., Dzidzawa I.I. et al. СT and MRI in the assessment of resectable and borderline resectable pancreatic tumors. Annals of HPB Surgery, 2021, Vol. 26, No. 1, рр. 34–47 (In Russ.)]. doi: 10.16931/1995-5464.2021134-47.
16. Revishvili A.Sh., Kriger A.G., Vishnevsky V.A. and other Topical issues of pancreatic surgery. Surgery. Journal them. N. I. Pirogov, 2018, No. 9, pp. 5–14 (In Russ.) doi: 10.17116/hirurgia20180915.
17. Beetz O., Sarisin A., Kaltenborn A. et al. Multivisceral resection for adenocarcinoma of the pancreatic body and tail-a retrospective single-center analysis // World J. Surg. Oncol. 2020. Vol. 18, No. 1. P. 218. doi: 10.1186/s12957-020-01973-x. PMID: 32819373.
18. Mikhailov I.V., Bondarenko V.M., Kudryashov V.A. Dynamics of the results of treatment of resectable pancreatic head cancer over a 30-year period. Problems of health and ecology, 2019, Vol. 3, No. 61, pp. 50–55 (In Russ.).
19. Grekova N.M., Shishmentsev N.B., Yu.V. Naimushina Yu.V. and others. Acute pancreatitis: modern concepts of surgical treatment. News of Surgery, 2020, Vol. 28, No. 2, pp. 197–206 (In Russ.). doi: 10.18484/2305-0047.2020.2.197.
20. Katorkin S.E., Kolsanov A.V., Bystrov S.A. et al. Virtual 3-D modeling in the surgical treatment of chronic pancreatitis. News of Surgery, 2017, Vol. 25, No. 5, pp. 503–509 (In Russ.).
21. Kaprin I.A., Eldarova Z.E., Glabay V.P. Surgical treatment and complications of operations in severe acute pancreatitis. Research and practice in medicine, 2018, Vol. 5, No. 4, pp. 72–81 (In Russ.). doi: 10.17709/2409-2231-2018-5-4-7.
22. Korymasov E.A., Krivoshchekov E.P., Khoroshilov M.Yu., Zelter P.M. 3D-modeling in acute pancreatitis: a clinical example of the effectiveness of the use of digital technologies. Modern medicine, 2021, No. 2 (21), pp. 57–60 (In Russ.).
23. Dumont R., Puleo F., Collignon J. et al. A single center experience in resectable pancreatic ductal adenocarcinoma: the limitations of the surgery-first approach. Critical review of the literature and proposals for practice update // Acta Gastroenterol Belg. 2017. Vol. 80, No. 4. P. 451–461. PMID: 29560639.
24. Hess G.F., Soysal S.D., Nicolas G. et al. Surgical Strategy Based on Radiological 3D Reconstruction in a Giant Metastatic Neuroendocrine Tumor of the Pancreas: A Case Report of an Interdisciplinary Approach // Case Rep. Surg. 2021. Vol. 2021. P. 8811155. doi: 10.1155/2021/8811155. PMID: 33564486.
25. Joliat G.R., Labgaa I., Sulzer J. et al. International assessment and validation of the prognostic role of lymph node ratio in patients with resected pancreatic head ductal adenocarcinoma // Hepatobiliary Surg. Nutr. 2022. Vol. 11, No. 6. P. 822–833. doi: 10.21037/hbsn-21–99. PMID: 36523941.
26. Lu Q., Zhou C., Zhang H. et al. A multimodal model fusing multiphase contrast-enhanced CT and clinical characteristics for predicting lymph node metastases of pancreatic cancer // Phys. Med. Biol. 2022. Vol. 67, No. 17. doi: 10.1088/1361-6560/ac858e. PMID: 35905729.
27. Kojima H., Kitago M., Iwasaki E. et al. Peritoneal dissemination of pancreatic cancer caused by endoscopic ultrasound-guided fine needle aspiration: A case report and literature review // World J. Gastroenterol. 2021. Vol. 27, No. 3. P. 294–304. doi: 10.3748/wjg.v27.i3.294. PMID: 33519143.
28. Andersen B.T., Stimec B.V., Kazaryan A.M. et al. Re-interpreting mesenteric vascular anatomy on 3D virtual and/or physical models, part II: anatomy of relevance to surgeons operating splenic flexure cancer // Surg. Endosc. 2022. Vol. 36, No. 12. P. 9136–9145. doi: 10.1007/s00464-022-09394-5. PMID: 35773607.
29. Templin R., Tabriz N., Hoffmann M. et al. Case Report: Virtual and Interactive 3D Vascular Reconstruction Before Planned Pancreatic Head Resection and Complex Vascular Anatomy: A Bench-To-Bedside Transfer of New Visualization Techniques in Pancreatic Surgery // Front Surg. 2020. Vol. 7. P. 38. doi: 10.3389/fsurg.2020.00038. PMID: 32626723.
30. Zhou H.T., Peng C.B., Han Y. et al. Quantitative analysis of three-dimensional reconstruction data to guide the selection of methods for laparoscopic distal pancreatectomy // J. Hepatobiliary Pancreat. Sci. 2021. Vol. 28, No. 8. P. 659–670. doi: 10.1002/jhbp.849. PMID: 33053264.
31. Dolay K., Malya F.U., Akbulut S. Management of pancreatic head adenocarcinoma: From where to where? // World J. Gastrointest. Surg. 2019. Vol. 11, No. 3. P. 143–154. doi: 10.4240/wjgs.v11.i3.143.
32. McGuigan A., Kelly P., Turkington R.C. et al. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes // World J. Gastroenterol. 2018. Vol. 24, No. 43. P. 4846–4861. doi: 10.3748/wjg.v24.i43.4846. PMID: 30487695.
33. Rubtsova N.A., Pheduleev M.N., Nerestyuk Y.I. et al. Arterial blood supply to the liver, celiac and mesenteric pool (literature review). Medical Visualization, 2021, Vol. 25, No. 2, рр. 74–83 (In Russ.). doi: 10.24835/1607-0763-928.
34. Kwon J., Shin S.H., Yoo D. et al. Arterial resection during pancreatectomy for pancreatic ductal adenocarcinoma with arterial invasion: A single-center experience with 109 patients // Medicine (Baltimore). 2020. Vol. 99, No. 37. e22115. doi: 10.1097/MD.0000000000022115. PMID: 32925757.
35. Heckler M., Hackert T. Surgery for locally advanced pancreatic ductal adenocarcinoma-is it only about the vessels? // J. Gastrointest. Oncol. 2021. Vol. 12, No. 5. P. 2503–2511. doi: 10.21037/jgo-20-313. PMID: 34790411.
36. Marconi S., Pugliese L., Del Chiaro M. et al. An innovative strategy for the identification and 3D reconstruction of pancreatic cancer from CT images // Updates Surg. 2016. Vol. 68, No. 3. P. 273–278. doi: 10.1007/s13304-016-0394-8. PMID: 27605209.
37. Andolfi C., Plana A., Kania P. et al. Usefulness of Three-Dimensional Modeling in Surgical Planning, Resident Training, and Patient Education // J. Laparoendosc. Adv. Surg. Tech. A. 2017. Vol. 27, No. 5. P. 512–515. doi: 10.1089/lap.2016.0421. PMID: 27813710.
38. Zhang Z., Liu L., Li Y. et al. Therapeutic experience of a pancreatic mixed serous neuroendocrine neoplasm invading peripancreatic vessels: A case report // Medicine (Baltimore). 2022. Vol. 101, No. 35. e30323. doi: 10.1097/MD.0000000000030323. PMID: 36107509.
39. Nerestyuk Ya.I., Karmazanovsky G.G., Kubyshkin V.A. et al. Three-dimensional reconstruction of computed tomograms in the choice of operating mode in pancreatic ductal adenocarcinoma. Surgery. Journal them. N. I. Pirogova, 2017, No. 4, pp. 36–40 (In Russ.). doi: 10.17116/hirurgia2017436-40.
40. Khatkov I.E., Domrachev S.A., Tsvirkun V.V. et al. Prediction of postpancreatoduo-denectomy pancreatic fistula with the use of computer tomography. Medical Visualization, 2019, Vol. 23, No. 1, рр. 19–27 (In Russ.). doi: 10.24835/1607-0763- 2019-1-19-27.
41. Renard Y., de Mestier L., Perez M. et al. Unraveling Pancreatic Segmentation // World J. Surg. 2018. Vol. 42, №4. P. 1147–1153. doi: 10.1007/s00268-017-4263- 5. PMID: 28975436.
42. Wang P.F., Liu Z.W., Cai S.W. et al. Usefulness of three-dimensional visualization technology in minimally invasive treatment for infected necrotizing pancreatitis // World J. Gastroenterol. 2018. Vol. 24, No. 17. P. 1911–1918. doi: 10.3748/wjg.v24.i17.1911. PMID: 29740206.
43. Shi Y., Gao F., Li Y. et al. Differentiation of benign and malignant solid pancreatic masses using magnetic resonance elastography with spin-echo echo planar imaging and three-dimensional inversion reconstruction: a prospective study // Eur. Radiol. 2018. Vol. 28, No. 3. P. 936–945. doi: 10.1007/s00330-017-5062-y. PMID: 28986646
44. Irtan S., Hervieux E., Boutroux H. et al. Preoperative 3D reconstruction images for paediatric tumours: Advantages and drawbacks // Pediatr. Blood Cancer. 2021. Vol. 68, No. 1. e28670. doi: 10.1002/pbc.28670. PMID: 32827349.
45. Marconi S., Pugliese L., Botti M. et al. Value of 3D printing for the comprehension of surgical anatomy // Surg. Endosc. 2017. Vol. 31, No. 10. P. 4102–4110. doi: 10.1007/s00464-017-5457-5. PMID: 28281114.
46. Mazzola M., Morini L., Crippa J. et al. Totally Laparoscopic Pancreaticoduodenectomy: Technical Notes // Chirurgia (Bucur). 2020. Vol. 115, No. 3. P. 385–393. doi: 10.21614/chirurgia.115.3.385. PMID: 32614295.
47. Müller P.C., Haslebacher C., Steinemann D.C. et al. Image-guided minimally invasive endopancreatic surgery using a computer-assisted navigation system // Surg. Endosc. 2021. Vol. 35, No. 4. P. 1610–1617. doi: 10.1007/s00464-020-07540-5. PMID: 32253555.
48. Lin C., Gao J., Zheng H. et al. Three-dimensional visualization technology used in pancreatic surgery: a valuable tool for surgical trainees // Journal of Gastrointestinal Surgery. 2020. Vol. 24, No. 4. P. 866–873. doi: 10.1007/s11605–019–04214-z. PMID: 31012044
Review
For citations:
Kudashkina A.S., Kamyshanskaya I.G., Cheremisin V.M., Pavelets K.V., Rusanov D.S., Kalyuzhnyy S.A. The role of 3D modeling in pancreas surgery: a review. Diagnostic radiology and radiotherapy. 2023;14(3):18-26. (In Russ.) https://doi.org/10.22328/2079-5343-2023-14-3-18-26