Preview

Diagnostic radiology and radiotherapy

Advanced search

Radiogenomics of neurogenic tumors in children: a retrospective study

https://doi.org/10.22328/2079-5343-2024-15-2-25-34

Abstract

INTRODUCTION: Extracranial neurogenic tumors in children are represented by neoplasms of the sympathetic nervous system and adrenal medulla: ganglioneuromas, ganglioneuroblastomas and neuroblastomas. The main prognostic factors used to stratify patients into risk groups and, in many ways, determine the effectiveness of treatment are the histological type of the tumor and the presence of MYCN gene amplification.

OBJECTIVE: To evaluate the capabilities of quantitative MRI to determine the histological variant of neurogenic tumors and predict the presence of MYCN gene amplification in children.

MATERIALS AND METHODS: We retrospectively analyzed the data of 110 patients with primary peripheral neurogenic tumors who underwent therapy or received an advisory opinion at the D.Rogachev National Medical Research Center for Pediatric Orthopedics and Pediatric Orthopedics in the period from 2012 to 2022. with diagnoses of ganglioneuroma — 12, mixed ganglioneuroblastoma — 10, neuroblastoma — 88. The age of patients at the time of diagnosis ranged from 15 days to 16 years, median age — 17 months. Before surgery and therapeutic interventions, all patients underwent diffusion-weighted MRI and a tumor biopsy to determine MYCN gene amplification using FISH.

Statistics: To determine the threshold values of the apparent diffusion coefficient (ADC) of neurogenic tumors of various histological structures, as well as with the presence and absence of MYCN gene amplification, ROC analysis (receiver operating characteristic) was used. Differences in qualitative parameters in the studied groups of patients were analyzed using the χ2 test, and quantitative ones — using the Mann-Whitney and Kruskal-Wallis tests.

RESULTS: Threshold values of the ADC index were determined to reliably differentiate neurogenic tumors rich in Schwann stroma (ganglioneuromas and ganglioneuroblastomas, ADC≥1.25 mm2/s) and neuroblastomas, as well as neuroblastomas without MYCN gene amplification (0.78<ADC <1.25 mm2/s) and with the presence of amplification (ADC≤0.78 mm2/s). In the first case, sensitivity was 0.95, specificity — 0.94; in the second — 0.94 and 0.75, respectively.

DISCUSSION: Our data indicate the possibility of separating histological types of neurogenic tumors on the basis of quantitative MRI; the ADC value makes it possible to differentiate ganglioneuromas and ganglioneuroblastomas from neuroblastoma, as well as to distinguish neuroblastoma with the presence of MYCN gene amplification and without this genetic event. Non-invasive quantitative MRI makes it possible to assess the entire tumor volume at the diagnostic stage, and an extremely low ADC value radiogenomic sing for the presence of MYCN gene amplification in neuroblastoma.

CONCLUSION: Quantitative MRI with determination of ADC of neurogenic tumors allows not only to separate the histological variants of neurogenic tumors, but also to predict the presence of MYCN gene amplification as the most unfavorable genetic marker of neuroblastomas.

About the Authors

G. V. Tereshchenko
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Galina V. Tereshchenko — Cand. of Sci. (Med.), radiologist, head of the radiology department, head of the scientific department of radiology diagnostics

117997, Moscow, Samory Machela, 1



V. A. Lopatina
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Vera A. Lopatina — radiologist, employee of the scientific department

117997, Moscow, Samory Machela, 1



L. V. Zemtsova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Lyudmila V. Zemtsova — biologist of the laboratory of molecular oncology

117997, Moscow, Samory Machela, 1



D. M. Konovalov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Dmitry M. Konovalov — Cand. of Sci. (Med.), pathologist, head of the pathological department

117997, Moscow, Samory Machela, 1



N. A. Andreeva
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Natalya A. Andreeva — pediatric oncologist

117997, Moscow, Samory Machela, 1



T. V. Shamanskaya
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Tatyana V. Shamanskaya — Dr. of Sci. (Med.), pediatric oncologist, head of the department for the study of embryonic tumors

117997, Moscow, Samory Machela, 1



G. A. Novichkova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Galina A. Novichkova — Dr. of Sci. (Med.), Professor, pediatric hematologist, General Director

117997, Moscow, Samory Machela, 1



D. Yu. Kachanov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Denis Yu. Kachanov — Dr. of Sci. (Med.), pediatric oncologist, head of the department of clinical oncology

117997, Moscow, Samory Machela, 1



A. E. Druy
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Research Institute of Medical Cell Technologies
Russian Federation

Alexander E. Druy — Cand. of Sci. (Med.), geneticist, head of the laboratory of molecular oncology; Researcher

117997, Moscow, Samory Machela, 1

22 Karl Marx St., Yekaterinburg, 20026



References

1. Nakazawa A., Haga C., Ohira M., Okita H., Kamijo T., Nakagawara A. Correlation between the International Neuroblastoma Pathology Classification and genomic signature in neuroblastoma // Cancer Sci. 2015. Vol. 106, No. 6. Р. 766–771. doi: 10.1111/cas.12665.

2. Monclair T., Brodeur G.M., Ambros P.F. et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report // Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009. Vol. 2, No. 27. Р. 298–303, doi: 10.1200/JCO.2008.16.6876.

3. London W.B., Castleberry R.P., Matthay K.K. et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group // Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2005. Vol. 27, No. 23. Р. 6459–6465, doi: 10.1200/JCO.2005.05.571.

4. Cohn S.L., Pearson A.D., London W.B. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report // J. Clin. Oncol. 2009. Vol. 27, No. 2. Р. 289–297. doi: 10.1200/JCO.2008.16.6785.

5. Attiyeh E.F., London W.B., Mossé Y.P. et. al. Chromosome 1p and 11q deletions and outcome in neuroblastoma // N. Engl. J. Med. 2005. Vol. 353, No. 21. Р. 2243– 2253. doi: 10.1056/NEJMoa052399.

6. Berthold F., Spix C., Kaatsch P., Lampert F. Incidence, Survival, and Treatment of Localized and Metastatic Neuroblastoma in Germany 1979-2015 // Paediatr Drugs. 2017. Vol. 19, No. 6. Р. 577–593. doi: 10.1007/s40272-017-0251-3.

7. Liang W.H., Federico S.M., London W.B., Naranjo A., Irwin M.S., Volchenboum S.L., Cohn S.L. Tailoring Therapy for Children With Neuroblastoma on the Basis of Risk Group Classification: Past, Present, and Future // JCO Clin Cancer Inform. 2020. Vol. 4. Р. 895–905. doi: 10.1200/CCI.20.00074.

8. Ackermann S., Cartolano M., Hero B. et. al. A mechanistic classification of clinical phenotypes in neuroblastoma // Science. 2018. Vol. 362, No. 6419. Р. 1165–1170. doi: 10.1126/science.aat6768.

9. Kumps C., Fieuw A., Mestdagh P., et al. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes // PLoS One. 2013. Vol. 8, No. 1. e52321. doi: 10.1371/journal.pone.0052321.

10. Zhang Q., Zhang Q., Jiang X., et. al. Collaborative ISL1/GATA3 interaction in controlling neuroblastoma oncogenic pathways overlapping with but distinct from MYCN // Theranostics. 2019. Vol. 9, No. 4. Р. 986–1000. doi: 10.7150/thno.30199.

11. Chicard M., Boyault S., Colmet Daage L. et al. Genomic Copy Number Profiling Using Circulating Free Tumor DNA Highlights Heterogeneity in Neuroblastoma // Clin. Cancer Res. 2016. Vol. 22, No. 22. Р. 5564–5573. doi: 10.1158/1078-0432.CCR-16-0500.

12. Van Roy N., Van Der Linden M., Menten B. et al. Shallow Whole Genome Sequencing on Circulating Cell-Free DNA Allows Reliable Noninvasive Copy-Number Profiling in Neuroblastoma Patients // Clin. Cancer Res. 2017. Vol. 23, No. 20. Р. 6305–6314. doi: 10.1158/1078-0432.CCR-17-0675.

13. Gassenmaier S., Tsiflikas I., Fuchs J. et. al. Feasibility and possible value of quantitative semi-automated diffusion weighted imaging volumetry of neuroblastic tumors // Cancer Imaging. 2020. Vol. 20 (1). Р. 89. doi: 10.1186/s40644-020-00366-3.

14. Neubauer H., Li M., Müller V.R., Pabst T., Beer M. Diagnostic Value of Diffusion-Weighted MRI for Tumor Characterization, Differentiation and Monitoring in Pediatric Patients with Neuroblastic Tumors // RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren. 2017. Vol. 7, No. 189. Р. 640–650. doi: 10.1055/s-0043-108993.

15. Wang H., Chen X., Yu W. et al. Whole-tumor radiomics analysis of T2-weighted imaging in differentiating neuroblastoma from ganglioneuroblastoma/ganglioneuroma in children: an exploratory study // Abdom. Radiol. (NY). 2023. Vol. 48, No. 4. Р. 1372–1382. doi: 10.1007/s00261-023-03862-9.

16. Ghosh A., Yekeler E., Teixeira S.R. Role of MRI radiomics for the prediction of MYCN amplification in neuroblastomas // Eur. Radiol. 2023. Vol. 33, No. 10. Р. 6726–6735. doi: 10.1007/s00330-023-09628-7. Epub 2023 May 13.


Review

For citations:


Tereshchenko G.V., Lopatina V.A., Zemtsova L.V., Konovalov D.M., Andreeva N.A., Shamanskaya T.V., Novichkova G.A., Kachanov D.Yu., Druy A.E. Radiogenomics of neurogenic tumors in children: a retrospective study. Diagnostic radiology and radiotherapy. 2024;15(2):25-34. (In Russ.) https://doi.org/10.22328/2079-5343-2024-15-2-25-34

Views: 310


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)