Assessment of hemo- and cerebrospinal fluid dynamics disorders in idiopathic normal pressure hydrocephalus according to MRI data: a prospective study
https://doi.org/10.22328/2079-5343-2024-15-4-57-66
Abstract
INTRODUCTION: Idiopathic normal pressure hydrocephalus (NPH) is a condition characterized by enlargement of the cerebral ventricles and an isolated disturbance of cerebrospinal fluid dynamics, the etiology and pathogenesis of which are still not fully determined.
OBJECTIVE: To evaluate changes in hemo- and cerebrospinal fluid dynamics in idiopathic normal pressure hydrocephalus according to phase-contrast MRI data.
MATERIALS AND METHODS: Three groups of subjects were formed: patients with NPH (12 people), elderly volunteers with atrophic ventriculomegaly (15 people), a group of healthy volunteers (15 people). For each subject, the data from a routine MRI study, the volumes of gray, white matter and cerebrospinal fluid were assessed, and the volume-velocity characteristics of CSF and blood flows at several levels were calculated.
Statistics: For quantitative indicators of cerebrospinal fluid dynamics, the median (Me), 25% and 75% percentiles, and interquartile range were calculated. An intergroup assessment of the significance of differences was carried out using the Mann-Whitney U test and nonparametric multivariate analysis of variance MANOVA.
RESULTS: Individual neuroimaging markers of IGT were determined, as well as an increase in the volume-velocity characteristics of CSF flow at the level of the cerebral aqueduct (p<0.01, with a predominance of the retrograde component) in comparison with the control group and patients with atrophic ventriculomegaly. Multidirectional changes in the volume of intracranial venous outflow were revealed in the study groups: in patients with IGT – a decrease in outflow along the straight sinus by 1.4 times (p<0.01), in patients with atrophic ventriculomegaly – a decrease in outflow along the superior sagittal sinus by 1.3 times (p<0.05).
DISCUSSION: The data obtained show a significant impairment of cerebrospinal fluid dynamics in patients with NPH, in contrast to elderly volunteers with age-related atrophy and replacement expansion of the cerebrospinal fluid spaces at the level of the brain aqueduct, and also indicates the importance of the venous link in maintaining intracranial volumetric interactions.
CONCLUSION: The combined use of a routine protocol and phase-contrast MRI techniques made it possible to identify a number of neuroimaging, hemo- and CSF dynamic changes in patients with NPH in comparison with healthy volunteers, and also, most importantly, with patients of comparable age with the presence of replacement ventriculomegaly against the background of atrophy.
Keywords
About the Authors
O. B. BogomyakovaRussian Federation
Olga B. Bogomyakova – Cand. of Sci. (Med.), Researcher of the laboratory «MRT Technologies»
630090, 3A Institutskaya Str., Novosibirsk
G. S. Valova
Russian Federation
Galina S. Valova – Cand. of Sci. (Phys.-Math.), Researcher of biomechanics and multiscale mechanics of complex media
630090, 15 Lavrentyev avenue, Novosibirsk
Yu. A. Stankevich
Russian Federation
Yuliya A. Stankevich – Cand. of Sci. (Med.), Senior researcher of the laboratory «MRT Technologies»
630090, 3A Institutskaya Str., Novosibirsk
A. A. Cherevko
Russian Federation
Aleksandr A. Cherevko – Cand. of Sci. (Phys.-Math.), Senior researcher of biomechanics and multiscale mechanics of complex media
630090, 15 Lavrentyev avenue, Novosibirsk
A. A. Tulupov
Russian Federation
Andrey A. Tulupov – Dr. of Sci. (Med.), Professor, Corresponding Member of the RAS, chief researcher of the laboratory «MRT Technologies»
630090, 3A Institutskaya Str., Novosibirsk
References
1. Agarwal A., Bathla G., Kanekar S. Imaging of Communicating Hydrocephalus // Semin. Ultrasound, CT MRI. 2016. Vol. 37, No. 2. Р. 100–108. doi: 10.1053/j.sult.2016.02.007.
2. Bradley W.G. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus // Semin. Ultrasound, CT MRI. 2016. Vol. 37, No. 2. Р. 120–128. doi: 10.1053/j.sult.2016.01.005.
3. Martín-Láez R., Caballero-Arzapalo H., López-Menéndez L.Á. et al. Epidemiology of idiopathic normal pressure hydrocephalus: A systematic review of the literature // World Neurosurg. 2015. Vol. 84, No. 6. Р. 2002–2009. doi: 10.1016/j.wneu.2015.07.005.
4. Lemcke J., Stengel D., Stockhammer F. et al. Nationwide Incidence of Normal Pressure Hydrocephalus (NPH) Assessed by Insurance Claim Data in Germany // Open Neurol. J. 2016. Vol. 10. Р. 15–24. doi: 10.2174/1874205X01610010015.
5. Nikaido Y., Urakami H., Akisue T. et al. Associations among falls, gait variability, and balance function in 318 idiopathic normal pressure hydrocephalus // Clin. Neurol. Neurosurg. 2019. Vol. 12, No. 1. Р. 59–64. doi: 10.1016/j.clineuro.2019.105385.
6. Giorgio C., Marcello L., Enricomaria M. et al. Magnetic Resonance Imaging Diagnosis in Normal Pressure Hydrocephalus // World Neurosurg. 2024. Vol. 181. P. 171–177. doi: 10.1016/j.wneu.2023.10.110.
7. Grahnke K., Jusue-Torres I., Szujewski C. et al. The Quest for Predicting Sustained Shunt Response in Normal-Pressure Hydrocephalus: An Analysis of the Callosal Angle’s Utility // World Neurosurg. 2018. Vol. 115. e717–e722. doi: 10.1016/j.wneu.2018.04.150. Epub 2018 May 1.
8. Yin L.K., Zheng J.J., Zhao L. et al. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus // Acta Neurol. Scand. 2017. Vol. 136, No. 5. Р. 434–439. doi: 10.1111/ane.12750. Epub 2017 Mar 1.
9. Czosnyka M., Pickard J.D., Keong N.C.H. et al. Imaging normal pressure hydrocephalus: theories, techniques, and challenges // Neurosurg. Focus. 2016. Vol. 41, E11. doi: 10.3171/2016.7.FOCUS16194.
10. Williams M.A., Malm J. Diagnosis and Treatment of Idiopathic Normal Pressure Hydrocephalus // Continuum (Minneap. Minn). 2016. Vol. 22, No. 2. Р. 579–599. doi: 10.1212/CON.0000000000000305.
11. Qvarlander S., Ambarki K., Wahlin A. et al. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus // Acta Neurol. Scand. 2016. Vol. 135, No. 5. Р. 576–584. doi: 10.1111/ane.12636.
12. Afandiev R.M., Fadeeva L.M., Solozhentseva K.D., Pronin I.N. Magnetic resonance imaging in the evaluation of hydrocephalus. Journal of Radiology and Nuclear Medicine, 2021, Vol. 102, No. 2, рр. 124–133 (In Russ.). doi: 10.20862/0042-4676-2021-102-2-124-133.
13. Battal B., Kocaoglu M., Bulakbasi N. et al. Cerebrospinal fluid flow imaging by using phase-contrast MR technique // Br. J. Radiol. 2011. Vol. 84, No. 1004. Р. 758–765. doi: 10.1259/bjr/66206791.
14. Tokarev A.S., Talypova D.A., Terekhin I.A., Grin A.A. Quantitative and Qualitative Analysis of CSF Flow Dynamics. Russian Sklifosovsky Journal of Emergency Medical Care. 2022. Vol. 11, No. 1, рр. 86–95 (In Russ.). doi: 10.23934/2223-9022-2022-11-1-86-95.
15. Long J., Lin H., Cao G. et al. Relationship between intracranial pressure and phase-contrast cine MRI-derived measures of cerebrospinal fluid parameters in communicating hydrocephalus // Quant Imaging Med. Surg. 2019. Vol. 9, No. 8. Р. 1413–1420. doi: 10.21037/qims.2019.08.04.
16. Ringstad G., Emblem K.E., Eide P.K. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus // J. Neurosurg. 2016. Vol. 124. Р. 1850–1857. doi: 10.3171/2015.6.JNS15496.
17. Shanks X.J., Bloch K.M., Laurell K. et al. Aqueductal CSF Stroke Volume Is Increased in Patients with Idiopathic Normal Pressure Hydrocephalus and Decreases after Shunt Surgery // Am. J. Neuroradiol. 2019. Vol. 40. Р. 453–459. doi: 10.3174/ajnr.A5972.
18. Wagshul M.E., Chen J.J., Egnor M.R. et al. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature // J. Neurosurg. 2006. Vol. 104, No. 5. Р. 810–819. doi: 10.3171/jns.2006.104.5.810.
19. Lindstrom E.K., Ringstad G., Mardal K.A. et al. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus // Neuroimage Clin. 2018. Vol. 20. Р. 731–741. doi: 10.1016/j.nicl.2018.09.006.
20. Eide P.K., Hansson H.A. Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus // Neuropathol. Appl. Neurobiol. 2018. Vol. 44, No. 5. Р. 474–490. doi: 10.1111/nan.12420.
21. Sankari E.S., Gondry-Jouet C., Fichten A. et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus // Fluids and Barriers of the CNS. 2011. Vol. 8, No. 1. Р. 12. doi: 10.1186/2045-8118-8-12.
22. Pashkova A.A., Fokin V.A., Efimtsev A.Yu. et al. Magnetic resonance multivoxel morphometry in gray patter assessment in patients with hydrocephaly. Bulletin of the Russian military medical academy, 2012, Vol. 39, No. 3, рр. 201–205 (In Russ.).
23. Pahlavian S.H., Wang X., Ma S. et al. Cerebroarterial pulsatility and resistivity indices are associated with cognitive impairment and white matter hyperintensity in elderly subjects: A phase-contrast MRI study // J. Cereb. Blood Flow Metab. 2021. Vol. 41, No. 3. Р. 670–683. doi: 10.1177/0271678X20927101.
24. Dobrynina L.A., Gadzhieva Z.Sh., Shamtieva K.V. et al. Relations of impaired blood flow and cerebrospinal fluid flow with damage of strategic for cognitive impairment brain regiones in cerebral small vessel disease. Annals of clinical and experimental neurology, 2022, Vol. 16, No. 2, рр. 25–35 (In Russ.). doi: 10.54101/ACEN.2022.2.3.
Review
For citations:
Bogomyakova O.B., Valova G.S., Stankevich Yu.A., Cherevko A.A., Tulupov A.A. Assessment of hemo- and cerebrospinal fluid dynamics disorders in idiopathic normal pressure hydrocephalus according to MRI data: a prospective study. Diagnostic radiology and radiotherapy. 2024;15(4):57-66. (In Russ.) https://doi.org/10.22328/2079-5343-2024-15-4-57-66