Preview

Лучевая диагностика и терапия

Расширенный поиск

ЛУЧЕВАЯ ТЕРАПИЯ ОПУХОЛЕЙ ГОЛОВНОГО МОЗГА И ЭПИГЕНЕТИКА

https://doi.org/10.22328/2079-5343-2016-2-22-31

Полный текст:

Аннотация

Глиомы - самые распространенные первичные опухоли головного мозга, несмотря на внедрение инновационных технологий, у значительной доли пациентов наблюдается резистентность к проводимой радиотерапии и развиваются рецидивы. В ряде исследований было показано, что ключевую роль в канцерогенезе глиом играют эпигенетические изменения. Метилирование ДНК и модификация гистонов являются основными эпигенетическими механизмами регуляции экспрессии генов и, таким образом, модуляторами широкого спектра клеточных процессов, в том числе на чувствительность к облучению. Эпигенетические маркеры, ассоциированные с радиорезистентностью, перспективны в качестве предикторов ответа на лучевую терапию и прогноза. С другой стороны, имеющиеся данные позволяют предположить, что излучение, в свою очередь, индуцирует эпигенетическое перепрограммирование, что может повлиять на судьбу клеток или изменить клеточный ответ на последующее лучевое воздействие. Эпигенетические изменения потенциально могут быть медикаментозно скорректированы, поэтому они рассматриваются в качестве возможных мишеней для радиосенсибилизации опухолей. В данном обзоре представлено современное состояние проблемы взаимосвязи между эпигенетикой и ответом на лучевую терапию.

Об авторах

Артем Владимирович Карташев
Российский научный центр радиологии и хирургических технологий; Северо-Западный государственный медицинский университет им. И. И. Мечникова
Россия


Елена Игоревна Якубович
Российский научный центр радиологии и хирургических технологий
Россия


Список литературы

1. Kim R. K., Suh Y., Cui Y. H. et al. Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells // Cancer science.- 2013.- Vol. 104, № 9.- P 1172-1177.

2. Goldstein M., Kastan M. B. The DNA Damage Response: Implications for Tumor Responses to Radiation and Chemotherapy // Annual review of medicine.- 2015.- Vol. 66.- P 129-143.

3. Lord C. J, Ashworth A. The DNA damage response and cancer therapy // NaNature.- 2012.- Vol. 481, № 7381.- P 287-294.

4. Sulli G., Di Micco R., di Fagagna F. A. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer // Nature Reviews Cancer.- 2012.- Vol. 12, № 10.- P 709-720.

5. Curtin N. J. DNA repair dysregulation from cancer driver to therapeutic target // Nature Reviews Cancer.- 2012.- Vol. 12, № 12.- P 801-817.

6. Bartkova J., Hamerlik P., Stockhausen M. T. et al. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signaling in human gliomas // Oncogene.- 2010.- Vol. 29, № 36.- P 5095-5102.

7. Bartkova J., Horejsi Z., Koed K. et al. DNA damage response as a candidate anticancer barrier in early human tumorigenesis // Nature.- 2005.- Vol. 434, № 7035.- P 864-870.

8. Batey M. A., Zhao Y., Kyle S. et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer // Molecular cancer therapeutics.- 2013.- Vol. 12, № 6.- P 959-967.

9. Biddlestone-Thorpe L., Sajjad M., Rosenberg E., Beckta J. M. et al. ATM kinase inhibition preferentially sensitizes p53-mutant glio ma to ionizing radiation // Clinical Cancer Research.- 2013.- Vol. 19, № 12.- P. 3189-3200.

10. Borst G. R., McLaughlin M., Kyula J. N. et al. Targeted radiosensitization by the Chk1 inhibitor SAR-020106 // International Journal of Radiation Oncology Biology Physics.- 2013.- Vol. 85, № 4.- P. 1110-1118.

11. Golding S. E., Rosenberg E., Adams B. R. et al. Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control // Cell Cycle.- 2012.- Vol. 11, № 6.- P. 1167-1173.

12. Pires I. M., Olcina M. M., Anbalagan S. et al. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition // British journal of cancer.- 2012.- Vol. 107, № 2.- P 291-299.

13. Azzam E. I., Jay-Gerin J. P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury // Cancer letters.- 2012.- Vol. 327, № 1.- P. 48-60.

14. Moretti L., Cha Y. I., Niermann K. J., Lu B. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? // Cell cycle.- 2007.- Vol. 6, № 7.- P. 793-798.

15. Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria // International journal of radiation biology.- 2015.- Vol. 91, № 1.- P. 1-12.

16. Wu S. C., Zhang Y. Active DNA demethylation: many roads lead to Rome // Nature Reviews Molecular Cell Biology.- 2010.- Vol. 11, № 9.- P. 607-620.

17. Zielske S. P. Epigenetic DNA methylation in radiation biology: on the field or on the sidelines? // Journal of cellular biochemistry.- 2015.- Vol. 116, № 2.- P. 212-217.

18. Bibikova M., Barnes B., Tsan C. et al. High density DNA methylation array with single CpG site resolution // Genomics. - 2011. - Vol. 98, № 4.- P. 288- 295.

19. Stupp R., Brada M., van den Bent M. J. et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Annals of Oncology.- 2014.- P. mdu050.

20. Roy K., Wang L., Makrigiorgos G. M., Price B. D. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity // Biochemical and biophysical research communications.- 2006.- Vol. 344, № 3.- P 821-826.

21. Antwih D. A., Gabbara K. M., Lancaster W. D. et al. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways // Epigenetics.- 2013.- Vol. 8, № 8.- P 839-848.

22. Bae J. H., Kim J. G., Heo K. et al. Identification of radiation-induced aberrant hypomethylation in colon cancer // BMC genomics.- 2015.- Vol. 16, № 1.- P 56.

23. Halvorsen A. R., Helland A., Fleischer T. et al. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy // International Journal of Cancer. - 2014.- Vol. 135, № 9.- P 2085-2095.

24. Kim E. H., Park A. K., Dong S. M. et al. Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines // Oncogene.- 2010.- Vol. 29, № 33.- P. 4725-4731.

25. Kim H. J., Kim J. H., Chie E. K. et al. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity // Radiat Oncol.- 2012.- Vol. 7, № 1.- P 39.

26. Tamaru H. Confining euchromatin/heterochromatin territory: jumonji crosses the line // Genes & development.- 2010.- Vol. 24, № 14.- P 1465- 1478.

27. Bickmore W. A. The spatial organization of the human genome // Annual review of genomics and human genetics.- 2013.- Vol. 14.- P. 67-84.

28. Caron H., van Schaik B., van der Mee M. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains // Science.- 2001.- Vol. 291, № 5507.- P 1289-1292.

29. Falk M., Lukasova E., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair // Mutation Research/Reviews in Mutation Research.- 2010.- Vol. 704, № 1.- P 88-100.

30. Xue L. Y., Friedman L. R., Oleinick N. L. et al. Induction of DNA damage in -irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation // International journal of radiation biology.- 1994.- Vol. 66, № 1.- P 11-21.

31. Lavelle C., Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology // The international journal of biochemistry & cell biology.- 2014.- Vol. 49.- P. 84-97.

32. Moscariello M., Iliakis G. Effects of chromatin decondensation on alternative NHEJ // DNA repair.- 2013.- Vol. 12, № 11.- P. 972-981.

33. Goodarzi A. A., Noon A. T., Deckbar D. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin // Molecular cell.- 2008.- Vol. 31, № 2.- P 167-177.

34. Iliakis G. Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence // Radiotherapy and Oncology.- 2009.- Vol. 92, № 3.- P. 310-315.

35. Frankenberg-Schwager M. Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation // Radiotherapy and Oncology.- 1989.- Vol. 14, № 4.- P 307-320.

36. Chavaudra N., Bourhis J., Foray N. Quantified relationship between cellular radiosensitivity, DNA repair defects and chromatin relaxation: a study of 19 human tumour cell lines from different origin // Radiotherapy and oncology.- 2004.- Vol. 73, № 3.- P 373-382.

37. Groselj B., Sharma N. L., Hamdy F. C. et al. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair // British journal of cancer.- 2013.- Vol. 108, № 4.- P. 748-754.

38. Colin C., Devic C., Noel A. et al. DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells // International journal of radiation biology.- 2011.- Vol. 87, № 11.- P 1103-1112.

39. Diss E., Nalabothula N., Nguyen D. et al. VorinostatSAHA Promotes Hyper-Radiosensitivity in Wild Type p53 Human Glioblastoma Cells // Journal of clinical oncology and research.- 2014.- Vol. 2, № 1.- P 301-313.

40. Chalmers A., Johnston P., Woodcock M. et al. PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation // International Journal of Radiation Oncology Biology Physics.- 2004.- Vol. 58, № 2.- P. 410-419.

41. Thompson L. H. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography // Mutation Research/Reviews in Mutation Research.- 2012.- Vol. 751, № 2.- P 158-246.

42. Murr R., Vaissiere T., Sawan C. et al. Orchestration of chromatin-based processes: mind the TRRAP // Oncogene.- 2007.- Vol. 26, № 37.- P. 5358-5372.

43. Bonner W M., Redon C. E., Dickey J. S. et al. yH2AX and cancer // Nature Reviews Cancer.- 2008.- Vol. 8, № 12.- P 957-967.

44. Kuo L. J., Yang L. X. γ-H2AX-a novel biomarker for DNA doublestrand breaks // In Vivo.- 2008.- Vol. 22, № 3.- P. 305-309.

45. Kinner A., Wu W., Staudt C., Iliakis G. y-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin // Nucleic acids research.- 2008.- Vol. 36, № 17.- P. 5678-5694.

46. Hunt C. R., Ramnarain D., Horikoshi N. et al. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations // Radiation research.- 2013.- Vol. 179, № 4.- P. 383-392.

47. Zimmermann M., de Lange T. 53BP1: pro choice in DNA repair // Trends in cell biology.- 2014.- Vol. 24, № 2.- P 108-117.

48. Chaurasia P., Sen R., Pandita T. K., Bhaumik S. R. Preferential repair of DNA double-strand break at the active gene in vivo // Journal of Biological Chemistry.- 2012.- Vol. 287, № 43.- P. 36414-36422.

49. Suh Y., Lee S. J. Radiation treatment and cancer stem cells // Archives of pharmacal research.- 2015.- Vol. 38, № 3.- P 408-413.

50. Kim J. S., Kim S. Y., Lee M. et al. Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II a // Cancer biology & therapy.- 2015.- Vol. 16, № 4.- P 558-566.


Для цитирования:


Карташев А.В., Якубович Е.И. ЛУЧЕВАЯ ТЕРАПИЯ ОПУХОЛЕЙ ГОЛОВНОГО МОЗГА И ЭПИГЕНЕТИКА. Лучевая диагностика и терапия. 2016;(2):22-31. https://doi.org/10.22328/2079-5343-2016-2-22-31

For citation:


Kartashev A.F., Yakubovich E.I. LECTURES AND REVIEWS RADIATION THERAPY OF BRAIN TUMORS AND EPIGENETICS. Diagnostic radiology and radiotherapy. 2016;(2):22-31. (In Russ.) https://doi.org/10.22328/2079-5343-2016-2-22-31

Просмотров: 291


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)