Preview

Diagnostic radiology and radiotherapy

Advanced search

LECTURES AND REVIEWS RADIATION THERAPY OF BRAIN TUMORS AND EPIGENETICS

https://doi.org/10.22328/2079-5343-2016-2-22-31

Abstract

Gliomas are the most common primary intrinsic brain tumours and Ionizing radiation represents the most effective therapy for their treatment. However, despite successful adoption of innovative technologies, radiotherapy resistance and tumor recurrence still occur in a high proportion of patients. Thus there is great interest in understanding the underlying biology and developing new strategies to overcome radioresistance. The expanding investigation of glioma suggests that epigenetic changes play a critical roles in glioma genesis. DNA methylation and histone modification are key marks that regulate gene expression and thus modulate a wide range of cellular processes. The recent studies suggest that epigenetic state of tumor cell may affect сєіі sensitivity to radiation. Epigenetic markers associated with radioresistance hold promise as predictive biomarkers for therapy response and prognosis. On the other hand the obtained results suggest that radiation induces epigenetic reprogramming of cells which may influences the cell fate or alters the response to future exposure. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for radiotherapy sensitizers. This review describes the current knowledge on epigenetics in radiotherapy.

About the Authors

A. F. Kartashev
Russian Research Centre for Radiology and Surgical Technologies; North-Western State Medical University named after I. I. Mechnikov
Russian Federation


E. I. Yakubovich
Russian Research Centre for Radiology and Surgical Technologies
Russian Federation


References

1. Kim R. K., Suh Y., Cui Y. H. et al. Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells // Cancer science.- 2013.- Vol. 104, № 9.- P 1172-1177.

2. Goldstein M., Kastan M. B. The DNA Damage Response: Implications for Tumor Responses to Radiation and Chemotherapy // Annual review of medicine.- 2015.- Vol. 66.- P 129-143.

3. Lord C. J, Ashworth A. The DNA damage response and cancer therapy // NaNature.- 2012.- Vol. 481, № 7381.- P 287-294.

4. Sulli G., Di Micco R., di Fagagna F. A. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer // Nature Reviews Cancer.- 2012.- Vol. 12, № 10.- P 709-720.

5. Curtin N. J. DNA repair dysregulation from cancer driver to therapeutic target // Nature Reviews Cancer.- 2012.- Vol. 12, № 12.- P 801-817.

6. Bartkova J., Hamerlik P., Stockhausen M. T. et al. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signaling in human gliomas // Oncogene.- 2010.- Vol. 29, № 36.- P 5095-5102.

7. Bartkova J., Horejsi Z., Koed K. et al. DNA damage response as a candidate anticancer barrier in early human tumorigenesis // Nature.- 2005.- Vol. 434, № 7035.- P 864-870.

8. Batey M. A., Zhao Y., Kyle S. et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer // Molecular cancer therapeutics.- 2013.- Vol. 12, № 6.- P 959-967.

9. Biddlestone-Thorpe L., Sajjad M., Rosenberg E., Beckta J. M. et al. ATM kinase inhibition preferentially sensitizes p53-mutant glio ma to ionizing radiation // Clinical Cancer Research.- 2013.- Vol. 19, № 12.- P. 3189-3200.

10. Borst G. R., McLaughlin M., Kyula J. N. et al. Targeted radiosensitization by the Chk1 inhibitor SAR-020106 // International Journal of Radiation Oncology Biology Physics.- 2013.- Vol. 85, № 4.- P. 1110-1118.

11. Golding S. E., Rosenberg E., Adams B. R. et al. Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control // Cell Cycle.- 2012.- Vol. 11, № 6.- P. 1167-1173.

12. Pires I. M., Olcina M. M., Anbalagan S. et al. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition // British journal of cancer.- 2012.- Vol. 107, № 2.- P 291-299.

13. Azzam E. I., Jay-Gerin J. P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury // Cancer letters.- 2012.- Vol. 327, № 1.- P. 48-60.

14. Moretti L., Cha Y. I., Niermann K. J., Lu B. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? // Cell cycle.- 2007.- Vol. 6, № 7.- P. 793-798.

15. Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria // International journal of radiation biology.- 2015.- Vol. 91, № 1.- P. 1-12.

16. Wu S. C., Zhang Y. Active DNA demethylation: many roads lead to Rome // Nature Reviews Molecular Cell Biology.- 2010.- Vol. 11, № 9.- P. 607-620.

17. Zielske S. P. Epigenetic DNA methylation in radiation biology: on the field or on the sidelines? // Journal of cellular biochemistry.- 2015.- Vol. 116, № 2.- P. 212-217.

18. Bibikova M., Barnes B., Tsan C. et al. High density DNA methylation array with single CpG site resolution // Genomics. - 2011. - Vol. 98, № 4.- P. 288- 295.

19. Stupp R., Brada M., van den Bent M. J. et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Annals of Oncology.- 2014.- P. mdu050.

20. Roy K., Wang L., Makrigiorgos G. M., Price B. D. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity // Biochemical and biophysical research communications.- 2006.- Vol. 344, № 3.- P 821-826.

21. Antwih D. A., Gabbara K. M., Lancaster W. D. et al. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways // Epigenetics.- 2013.- Vol. 8, № 8.- P 839-848.

22. Bae J. H., Kim J. G., Heo K. et al. Identification of radiation-induced aberrant hypomethylation in colon cancer // BMC genomics.- 2015.- Vol. 16, № 1.- P 56.

23. Halvorsen A. R., Helland A., Fleischer T. et al. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy // International Journal of Cancer. - 2014.- Vol. 135, № 9.- P 2085-2095.

24. Kim E. H., Park A. K., Dong S. M. et al. Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines // Oncogene.- 2010.- Vol. 29, № 33.- P. 4725-4731.

25. Kim H. J., Kim J. H., Chie E. K. et al. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity // Radiat Oncol.- 2012.- Vol. 7, № 1.- P 39.

26. Tamaru H. Confining euchromatin/heterochromatin territory: jumonji crosses the line // Genes & development.- 2010.- Vol. 24, № 14.- P 1465- 1478.

27. Bickmore W. A. The spatial organization of the human genome // Annual review of genomics and human genetics.- 2013.- Vol. 14.- P. 67-84.

28. Caron H., van Schaik B., van der Mee M. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains // Science.- 2001.- Vol. 291, № 5507.- P 1289-1292.

29. Falk M., Lukasova E., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair // Mutation Research/Reviews in Mutation Research.- 2010.- Vol. 704, № 1.- P 88-100.

30. Xue L. Y., Friedman L. R., Oleinick N. L. et al. Induction of DNA damage in -irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation // International journal of radiation biology.- 1994.- Vol. 66, № 1.- P 11-21.

31. Lavelle C., Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology // The international journal of biochemistry & cell biology.- 2014.- Vol. 49.- P. 84-97.

32. Moscariello M., Iliakis G. Effects of chromatin decondensation on alternative NHEJ // DNA repair.- 2013.- Vol. 12, № 11.- P. 972-981.

33. Goodarzi A. A., Noon A. T., Deckbar D. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin // Molecular cell.- 2008.- Vol. 31, № 2.- P 167-177.

34. Iliakis G. Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence // Radiotherapy and Oncology.- 2009.- Vol. 92, № 3.- P. 310-315.

35. Frankenberg-Schwager M. Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation // Radiotherapy and Oncology.- 1989.- Vol. 14, № 4.- P 307-320.

36. Chavaudra N., Bourhis J., Foray N. Quantified relationship between cellular radiosensitivity, DNA repair defects and chromatin relaxation: a study of 19 human tumour cell lines from different origin // Radiotherapy and oncology.- 2004.- Vol. 73, № 3.- P 373-382.

37. Groselj B., Sharma N. L., Hamdy F. C. et al. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair // British journal of cancer.- 2013.- Vol. 108, № 4.- P. 748-754.

38. Colin C., Devic C., Noel A. et al. DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells // International journal of radiation biology.- 2011.- Vol. 87, № 11.- P 1103-1112.

39. Diss E., Nalabothula N., Nguyen D. et al. VorinostatSAHA Promotes Hyper-Radiosensitivity in Wild Type p53 Human Glioblastoma Cells // Journal of clinical oncology and research.- 2014.- Vol. 2, № 1.- P 301-313.

40. Chalmers A., Johnston P., Woodcock M. et al. PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation // International Journal of Radiation Oncology Biology Physics.- 2004.- Vol. 58, № 2.- P. 410-419.

41. Thompson L. H. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography // Mutation Research/Reviews in Mutation Research.- 2012.- Vol. 751, № 2.- P 158-246.

42. Murr R., Vaissiere T., Sawan C. et al. Orchestration of chromatin-based processes: mind the TRRAP // Oncogene.- 2007.- Vol. 26, № 37.- P. 5358-5372.

43. Bonner W M., Redon C. E., Dickey J. S. et al. yH2AX and cancer // Nature Reviews Cancer.- 2008.- Vol. 8, № 12.- P 957-967.

44. Kuo L. J., Yang L. X. γ-H2AX-a novel biomarker for DNA doublestrand breaks // In Vivo.- 2008.- Vol. 22, № 3.- P. 305-309.

45. Kinner A., Wu W., Staudt C., Iliakis G. y-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin // Nucleic acids research.- 2008.- Vol. 36, № 17.- P. 5678-5694.

46. Hunt C. R., Ramnarain D., Horikoshi N. et al. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations // Radiation research.- 2013.- Vol. 179, № 4.- P. 383-392.

47. Zimmermann M., de Lange T. 53BP1: pro choice in DNA repair // Trends in cell biology.- 2014.- Vol. 24, № 2.- P 108-117.

48. Chaurasia P., Sen R., Pandita T. K., Bhaumik S. R. Preferential repair of DNA double-strand break at the active gene in vivo // Journal of Biological Chemistry.- 2012.- Vol. 287, № 43.- P. 36414-36422.

49. Suh Y., Lee S. J. Radiation treatment and cancer stem cells // Archives of pharmacal research.- 2015.- Vol. 38, № 3.- P 408-413.

50. Kim J. S., Kim S. Y., Lee M. et al. Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II a // Cancer biology & therapy.- 2015.- Vol. 16, № 4.- P 558-566.


Review

For citations:


Kartashev A.F., Yakubovich E.I. LECTURES AND REVIEWS RADIATION THERAPY OF BRAIN TUMORS AND EPIGENETICS. Diagnostic radiology and radiotherapy. 2016;(2):22-31. (In Russ.) https://doi.org/10.22328/2079-5343-2016-2-22-31

Views: 1123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)