Лучевая диагностика и терапия

Расширенный поиск


Полный текст:


Описаны новые диагностические возможности применения МРТ с контрастным усилением для получения морфологических и физиологических данных, помогающих проводить дифференциальную диагностику различных патологий головного мозга. Приведены протоколы использования препарата нового поколения гадобутрола (Гадовиста) при проведении перфузионных и динамических исследований, позволяющие значительно улучшить диагностику инсульта и опухолевых заболеваний головного мозга.

Об авторах

Татьяна Николаевна Трофимова
Институт мозга человека им. Н. П. Бехтеревой Российской академии наук; Клиника «Скандинавия», ООО «Ава-Петер»; Российский национальный исследовательский медицинский университет им. Н. И. Пирогова

Николай Львович Шимановский
Российский национальный исследовательский медицинский университет им. Н. И. Пирогова

Список литературы

1. Runge V. M., Muroff L. R., Wells J. W. Principles of contrast enhancement in the evaluation of brain diseases: an overview // J. Magn. Reson. Imaging.- 1997.- Vol. 7.- Р. 5-13.

2. Runge V. M., Muroff L. R., Jinkins J. R. Central nervous system: review of clinical use of contrast media // Top Magn. Reson. Imaging.- 2001.- Vol. 12.- Р. 231-263.

3. Forsting M., Palkowitsch P. Prevalence of acute adverse reactions to gadobutrol: a highly concentrated macrocyclic gadolinium chelate - review of 14,299 patients from observational trials // Eur. J. Radiol.- 2010.- Vol. 74.- Р e186-e192.

4. Engelhorn Т., Doerfler A. High-molar contrast agents for CNS application // Imaging Decisions MRI.- 2008.- Vol. 11.- Р. 26-32.

5. Cha S. Update on brain tumor imaging: from anatomy to physiology // AJNR.- 2006.- Vol. 27.- Р 475-487.

6. Sorensen A. G. Perfusion MR imaging: moving forward // Radiology.- 2008.- Vol. 249.- Р. 416-417.

7. Essig M., Shiroishi M. S., Nguyen T. B. et al. Perfusion MRI: the five most frequently asked technical questions. // Am. J. Roentgenol.- 2013.- Vol. 200.- Р. 24-34.

8. Brix G., Semmler W., Port R. et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging // J. Comput Assist Tomogr.- 1991.- Vol. 15.- Р. 621-628.

9. Tofts P. S., Kermode A. G. Measurement of the blood-brain barrier permeability and leakage B space using dynamic MR imaging. 1. Fundamental concepts // Magn. Reson. Med.- 1991.- Vol. 17.- Р 357-367

10. Paldino M. J., Barboriak D. P. Fundamentals of quantitative dynamic contrast-enhanced MR imaging // Magn. Reson. Imaging Clin. N. Am.- 2009.- Vol. 17.- Р 277-289.

11. Tofts P. S., Brix G., Buckley D. L. et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffu-sable tracer: standardized quantities and symbols // J. Magn. Reson. Imaging.- 1999.- Vol. 10.- Р. 223-232.

12. Miller J. C., Pien H. H., Sahani D. et al. Imaging angiogenesis: applications and potential for drug development // J. Natl. Cancer Inst.- 2005.- Vol. 97.- Р 172-187.

13. Jackson А., Jayson G. C., Li K. L. et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma // Br. J. Radiol.- 2003.- Vol. 76.- Р. 153-162.

14. Haase A. Snapshot FLASH MRI: applications to T1, T2, and chemi-cal-shift imaging // Magn. Reson. Med.- 1990.- Vol. 13.- Р. 77-89.

15. Buckley D., Parker G. Measuring contrast agent concentration in T1-weighted dynamic contrastenhanced MRI // Jackson А., Buckley D, Parker G, eds. Dynamic contrast-enhanced magnetic resonance imaging in oncology.- Berlin, Germany: Springer-Verlag, 2005.- Р. 69-79.

16. Cron G. O., Santyr G., Kelcz F. Accurate and rapid quantitative dynamic contrast-enhanced breast MR imaging using spoiled gra dient-recalled echoes and bookend T(1) measurements // Magn. Reson. Med.- 1999.- Vol. 42.- Р 746-753.

17. Cron G. O., Kelcz F., Santyr G. E. Improvement in breast lesion characterization with dynamic contrast- enhanced MRI using pharmacokinetic modeling and bookend T(1) measurements // Magn. Reson. Med.- 2004.- Vol. 51.- Р 1066-1070.

18. Nguyen T. B., Cron G. O., Mercier J. F. et al. Diagnostic accuracy of dynamic contrast-enhanced MR imaging using a phase-derived vascular input function in the preoperative grading of gliomas // AJNR.- 2012.- Vol. 33.- Р 1539-1545.

19. Essig M., Dinkel J., Gutierrez J. E. Use of contrast media in neuroimaging // Magn. Reson. Imaging Clin. N. Am.- 2012.- Vol. 20.- Р 633-648.

20. Li А., Wong C. S., Wong M. K. et al. Acute adverse reactions to magnetic resonance contrast media.- Р gadolinium chelates // Br. J. Radiol.- 2006.- Vol. 79.- Р 368-371.

21. Dillman J. R., Ellis J. H., Cohan R. H. et al. Frequency and severity of acute allergic-like reactions to gadolinium-containing IV contrast media in children and adults // AJR.- 2007.- Vol. 189.- Р 1533-1538.

22. Abujudeh H. H., Kosaraju V. K., Kaewlai R. Acute adverse reactions to gadopentetate dimeglumine and gadobenate dimeglumine: experience with 32,659 injections // AJR.- 2010.- Vol. 194.- Р 430-434.

23. Prince M. R., Zhang H., Zou Z. et al. Incidence of immediate gadolinium contrast media reactions // AJR.- 2011.- Vol. 196.- Р 402.- Vol. [web]W138-W143.

24. Frenzel Т., Lengsfeld Р., Schirmer Н. et al. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C // Invest Radiol.- 2008.- Vol. 43.- Р 817-828

25. Sieber M. А., Lengsfeld Р., Walter J. et al. Gadolinium-based contrast agents and their potential role in the pathogenesis of nephrogenic systemic fibrosis: the role of excess ligand // J. Magn. Reson. Imaging. 2008.- Vol. 27.- Р 955-962.

26. Sieber M. А., Lengsfeld Р., Frenzel T. et al. Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions // Eur. Radiol.- 2008.- Vol. 18.- Р 2164-2173.

27. Grobner T. Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? // Nephrol. Dial Transplant.- 2006.- Vol. 21.- Р 1104-1108.

28. European Medicines Agency. European Medicines Agency makes recommendations to minimise risk of nephrogenic systemic fibrosis with gadoliniumcontaining contrast agents. http: //www. ema. europa. eu/ema/index. jsp?curl_pages/medicines/human/public_health_alerts/2010/09/human_pha_detail_000013. jsp&murl_menus/medicines/medicines.jsp&mid_&jsenab-led_true. Accessed January 14, 2011.

29. US Food and Drug Administration. FDA News Release. New warnings required on use of gadolinium-based contrast agents: enhanced screening recommended to detect kidney dysfunction. http://www. fda. gov/NewsEvents/Newsroom/PressAnnounce-ments/ucm225286. htm. Accessed January 14, 2011.

30. Port M., Corot C, Violas Х. et al. How to compare the efficiency of albuminbound and nonalbumin-bound contrast agents in vivo: the concept of dynamic relaxivity. Invest Radiol 2005.- Vol. 40.- Р 565-573.

31. Giesel F. L., Mehndiratta А., Risse F et al. Intraindividual comparison between gadopentetate dimeglumine and gadobutrol for magnetic resonance perfusion in normal brain and intracranial tumors at 3 Tesla // Acta Radiol. -2009.- Vol. 50.- Р 521-530.

32. Rohrer M., Bauer H, Mintorovitch J. et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths // Invest Radiol.- 2005.- Vol. 40.- Р. 715-224.

33. Akeson Р., Jonsson Е., Haugen I. et al. Contrast-enhanced MRI of the central nervous system: comparison between gadodiamide injection and gadolinium-DTPA // Neuroradiology.- 1995.- Vol. 37.- Р 229-233.

34. Anzalone N., Gerevini S., Scotti R. et al. Detection of cerebral metastases on magnetic resonance imaging.- Р. intraindividual comparison of gadobutrol with gadopentetate dimeglumine // Acta Radiol. -2009.- Vol. 50.- Р 933-940.

35. Essig M., Lodemann K. P., Le Huu M. et al. Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1,5 T // Invest Radiol.- 2006.- Vol. 41.- Р 256-263.

36. Kuhn M. J., Picozzi Р., Maldjian J. A. et al. Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention // J. Neurosurg.- 2007.- Vol. 106.- Р 557-566.

37. Kramer J. H., Arnoldi E., François C. J. et al. Dynamic and Static Magnetic Resonance Angiography of the Supra-aortic Vessels at 3. 0 T. Intraindividual Comparison of Gadobutrol, Gadobenate Dimeglumine, and Gadoterate Meglumine at Equimolar Dose // Invest Radiol.- 2013.- Vol. 48.- Р 121-128.

38. Attenberger U. I., Runge V. M., Jackson C. B. et al. Comparative evaluation of lesion enhancement using 1 M gadobutrol vs. 2 conventional gadolinium chelates, all at a dose of 0,1 mmol/kg, in a rat brain tumor model at 3 T // Invest Radiol.- 2009.- Vol. 44.- Р 251-256.

39. Tombach В., Benner Т., Reimer P. et al. Do highly concentrated gadolinium chelates improve MRbrain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0,5 versus 1,0 mol/L gadobutrol // Radiology.- 2003.- Vol. 226.- Р 880-888.

40. Essig M., Anzalone N., Combs S. E. et al. MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. Am. J. Neuroradiol. 2012.- Vol. 33.- Р 803-817.

41. Kim E. S., Chang J. H., Choi H. S. et al. Diagnostic yield of double-dose gadobutrol in the detection of brain metastasis: intraindividual comparison with double-dose gadopentetate dimeglumine // Am. J. Neuroradiol.- 2010.- Vol. 31.- Р 1055-1058.

42. Van der Molen A. J., Bellin M. F. Extracellular gadolinium-based contrast media: differences in diagnostic efficacy // Eur. J. Radiol. - 2008.- Vol. 66.- Р 168-174.

43. Anzalone N. Comparative studies of different gadolinium agents in brain tumors: differences between gadolinium chelates and their possible influence on imaging features // Am. J. Neuroradiol.- 2010.- Vol. 31.- Р 981-982.

44. Bleeker E. J., van Buchem M. А., van Osch M. J. Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI // J. Cereb. Blood Flow Metab.- 2009.- Vol. 29.- Р 840-852.

45. Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking // J. Magn. Reson. Imaging.- 2005.- Vol. 22.- Р 710-717.

46. Martin A. J., Cha S., Higashida R. T. et al. Assessment of vasculature of meningiomas and the effects of embolization with intra-arterial MR perfusion imaging: a feasibility study // AJNR.- 2007.- Vol. 28.- Р 1771-1777.

47. Aronen H. J., Gazit I. E., Louis D. N. et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings // Radiology.- 1994.- Vol. 191.- Р 41-51.

48. Law M., Yang S., Wang Н. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging // AJNR.- 2003.- Vol. 24.- Р 1989-1998.

49. Shin J. H., Lee Н. К., Kwun B. D. et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results // AJR.- 2002.- Vol. 179.- Р 783-789.

50. Law M., Yang S., Babb J. S. et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade // AJNR. - 2004.- Vol. 25.- Р 746-755.

51. Bisdas S., Kirkpatrick M., Giglio P., Welsh C., Spampinato M. V., Rumboldt Z. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? // AJNR.- 2009.- Vol. 30.- Р 681-688.

52. Lev M. H., Rosen B. R. Clinical applications of intracranial perfusion MR imaging // Neuroimaging Clin. N. Am.- 1999.- Vol. 9.- Р 309-331.

53. Danchaivijitr N., Waldman A. D., Tozer D. J. et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 2008.- Vol. 247.- Р 170-178.

54. Arai M., Kashihara K., Kaizaki Y. Enhancing gliotic cyst wall with microvascular proliferation adjacent to a meningioma // J. Clin. Neurosci.- 2006.- Vol. 13.- Р 136-139.

55. Cha S., Yang L., Johnson G. et al. Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas // AJNR.- 2006.- Vol. 27.- Р 409-417.

56. Law M., Young R. J., Babb J. S. et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging // Radiology.- 2008.- Vol. 247.- Р 490-498.

57. Lacerda S., Law M. Magnetic resonance perfusion and permeability imaging in brain tumors // Neuroimaging Clin N Am.- 2009.- Vol. 19.- Р 527-557.

58. Weber M. А., Henze M., Tüttenberg J. et al. Biopsy targeting gliomas: do functional imaging techniques identify similar target areas? // Invest. Radiol. 2010.- Vol. 45.- Р 755-768.

59. Wintermark M., Albers G. W., Alexandrov A. V et al. Acute stroke imaging research roadmap // AJNR.- 2008.- Vol. 29.- Р e23-e30.

60. Saur D., Kucinski Т., Grzyska U. et al. Sensitivity and interrater agreement of CT and diffusionweighted MR imaging in hyperacute stroke // AJNR.- 2003.- Vol. 24.- Р. 878-885.

61. Fiehler J., Knudsen K., Kucinski T. et al. Predictors of apparent diffusion coefficient normalization in stroke patients // Stroke.- 2004.- Vol. 35.- Р 514-519.

62. Thijs V. N., Somford D. M., Bammer R., Robberecht W., Moseley M. E., Albers G. W. Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging // Stroke. - 2004.- Vol. 35.- Р 94-98.

63. Leiva-Salinas C., Wintermark M., Kidwell C. S. Neuroimaging of cerebral ischemia and infarction // Neurotherapeutics.- 2011.- Vol. 8.- Р 19-27.

64. Essig M., Nguyen T. B., Shiroishi M. S. et al. Perfusion MRI: the five most frequently asked clinical questions // Am. J. Roentgenol.- 2013.- Vol. 20.- Р W495-510.

65. Kidwell C. S., Alger J. R., Saver J. L. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging // Stroke.- 2003.- Vol. 34.- Р 2729-2735.

66. Roldan-Valadez Е., Gonzalez-Gutierrez O., Martinez-Lopez M. Diagnostic performance of PWI/ DWI MRI parameters in discriminating hyperacute versus // Clin. Radiol.- 2012.- Vol. 67 (3).- Р. 250-257.

67. Schlaug G., Benfield А., Baird A. E. et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI // Neurology.- 1999.- Vol. 53.- Р 1528-1537.

68. Warach S., Dashe J. F., Edelman R. R. Clinical outcome in ischemic stroke predicted by early diffusion- weighted and perfusion magnetic resonance imaging: a preliminary analysis // J. Cereb. Blood Flow Metab.- 1996.- Vol. 16.- Р 53-59.

69. Jansen O., Schellinger P., Fiebach J., Hacke W., Sartor K. Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI // Lancet.- 1999.- Vol. 353.- Р 2036-2037.

70. Kane I., Carpenter Т., Chappell F. et al. Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes // Stroke. - 2007.- Vol. 38.- Р 3158-3164.

71. Albers G. W., Thijs V. N., Wechsler L. et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study // Ann. Neurol.- 2006.- Vol. 60.- Р 508-517.

72. Furlan A. J., Eyding D., Albers G. W. et al. Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset // Stroke.- 2006.- Vol. 37.- Р. 1227-1231.

73. Hacke W., Albers G., Al-Rawi Y. et al. The Desmoteplase in Acute Ischemic Stroke trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase // Stroke. - 2005.- Vol. 36.- Р 66-73.

74. Hacke W., Furlan A. J., Al-Rawi Y. et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebocontrolled study // Lancet Neurol.- 2009.- Vol. 8.- Р 141-150.

75. Mishra N. K., Albers G. W., Davis S. M. et al. Mismatch-based delayed thrombolysis: a meta-analysis // Stroke.- 2010.- Vol. 41.- Р e25-e33.

76. Zamecnik P., Essig M. Perspectives of 3 T magnetic resonance imaging in radiosurgical treatment planning // Acta Neurochir. Suppl.- 2013.- Vol. 116.- Р 187-191.

77. Dai W., Lopez O. L., Carmichael O. T., Becker J. T., Kuller L. H., Gach H. M. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging // Radiology. - 2009.- Vol. 250.- Р 856-866.

78. Chen W., Song Х., Beyea S., D’Arcy R., Zhang Y., Rockwood K. Advances in perfusion magnetic resonance imaging in Alzheimer’s disease // Alzheimers Dement.- 2011.- Vol. 7.- Р 185-196.

79. Théberge J. Perfusion magnetic resonance imaging in psychiatry // Top Magn. Reson. Imaging.- 2008.- Vol. 19.- Р 111-130.

Для цитирования:


For citation:


Просмотров: 693

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2079-5343 (Print)