АНАЛИЗ ДАННЫХ QUANTEC ПО ТОЛЕРАНТНЫМ ДОЗАМ ОБЛУЧЕНИЯ СЕРДЦА И НОВЫЕ КЛИНИЧЕСКИЕ ДАННЫЕ


https://doi.org/10.22328/2079-5343-2017-4-68-74

Полный текст:


Аннотация

В статье проведен обзор данных о толератных дозах для сердца при облучении различных локализаций. К имеющимся данным, представленным в QUANTEC, добавлены результаты исследований проведенных в последние семь лет. Сделаны выводы о несопоставимости данных, получаемых при облучении области грудины и молочной железы. Вопрос о дозах на сердце при облучении в техниках VMAT пока плохо освещен в дитературе. 


Об авторах

Ж. С. Лебедева
Первый Санкт-Петербургский Государственный Медицинский Университет им. акад. И. П. Павлова
Россия

кандитат физико-математических наук, медицинкий физик

197022, Санкт-Петербург, ул. Льва Толстого 6/8



А. П. Литвинов
Первый Санкт-Петербургский Государственный Медицинский Университет им. акад. И. П. Павлова
Россия

заведующий отделением

радиологическое отделение

ассистент

кафедра рентгенологии и радиационной медицины

197022, Санкт-Петербург, ул. Льва Толстого 6/8



Список литературы

1. Emami B., Lyman J., Brown A. et al. Tolerance of normal tissue to therapeutic irradiation, 1991, Vol. 21, рр. 109–122.

2. Marks L.B., Haken R.K., Martel M.K. et al. Guest editor’s introduction to quantec: a users guide, 2010, Vol. 76, No. 3, рр. 1–2.

3. Bentzen S.M., Constine L.S., Deasy J.O. et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues, Int. J. Radiation Oncology Biol. Phys., 2010, Vol. 76, No. 3, рр. 3–9.

4. Marks B.L., Yorke E.D., Jackson A. et al Use of normal tissue complication probability models in the clinic, Int. J. Radiation Oncology Biol. Phys., 2010, Vol. 76, No. 3, рр. 10–19.

5. Allen Li X., Alber M., Deasy J.O. et al. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM, Med. Phys., 2012, Vol. 39, No. 3, рр. 1386–409.

6. Lyman J.T. Complication probability as assessed from dose-volume histograms. Radiat. Res., 1985, Vol. 8, рр. 13–19.

7. Kutcher G.J., Burman C., Brewster L. et al. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations, Int. J. Radiat. Oncol. Biol. Phys., 1991, Vol. 21, рр. 137–146.

8. Burman C., Kutcher G.J., Emami B. et al. Fitting of normal tissue tolerance data to an analytic function, Int. J. Radiat. Oncol. Biol. Phys., 1991, Vol. 21, рр. 123–135.

9. Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med. Phys., 1999, Vol. 26, рр. 1100.

10. Mohan R., Mageras G.S., Baldwin B. et al. Clinically relevant optimization of 3-D conformal treatments. AAPM, 1992, Vol. 19, рр. 933–944.

11. Van den Bogaard V.A.B., Ta B.D.P., van der Schaaf A. et al. Validation and Modification of a Prediction Model for Acute Cardiac Events in Patients with Breast Cancer Treated with Raditherapy based on Three-Dimensional dose distributions to Cardiac Substructures. J. Clin Oncol., 2017, Vol. 35, No. 11.

12. Varian Developer Forum. https://variandeveloper.codeplex.com/ SourceControl/latest 13. Gagliardi G., Constine L.S., Moiseenko V. et al. Radiation dose-volume effects in the heart. Int. J. Radiation Oncology Biol. Phys., 2010, Vol. 73, No. 3, рр. S77–S85.

13. Nieder C., Schill S., Kneschaurek et al. Influence of different treatment techniques on radiation dose to the LAD coronary artery. Radiat Oncol., 2007, Vol. 2, р. 20.

14. RTOG. https://www.rtog.org/CoreLab/ContouringAtlases.aspx

15. Jackson A., Yorke E.D., Marks L.B. et al. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int. J. Radiat. Oncol. Biol. Phys., 2010, Vol. 76, рр. S155–160.

16. Darby S.C., Ewertz M., McGale P. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med., 2013, Vol. 368, рр. 987–998.

17. Schneider U., Ernst M., Hartmann M. The dose-response relationship for cardiovascular disease is not necessarily linear. Radiat Oncol., 2017, Vol. 12, рр. 74.

18. Eriksson F., Gagliardi G., Liedberg A. et al. Long-term cardiac mortality following radiation therapy for Hodgkin’s disease: analysis with the relative seriality model. Radiother Oncol., 2000, Vol. 55, рр. 153–162.

19. Gagliardi G., Lax I., Ottolenghi A. et al. Long-term cardiac mortality after radiotherapy of breast cancer: application of the relative seriality model. Brit. J. Radiol., 1996, Vol. 69, рр. 839–846.

20. Van Dijk-Peters F.B.J., Sijtsema N.M., Kierkels R.G.J. et al. Validation of a multi-atlas based autosegmentation of the heart in breast cancer patients. Radiother Oncol., 2015, Vol. 115, рр. 132–133.

21. Schultz-Hector S., Trott K.R. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int. J. Radiat. Oncol. Biol. Phys. 2007, Vol. 67, рр. 10–18.

22. Sardaro A., Petruzzelli M.F., D`Errico M.P. et al. Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother. Oncol., 2012, Vol. 103, рр. 133–142.

23. Beukema J.C., van Luijk P., Widder J. et al. Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer? Radiotherapy and Oncology, Vol. 114, рр. 80–85.

24. Wei X., Liu H.H., Tucker S.L., Wang S. et al. Risk factors for pericardial effusion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy. Int J. Radiat Oncol Biol Phys., 2008, Vol. 70, рр. 707–714.

25. Konski A., Li T., Christensen M., Cheng J.D. et al. Symptomatic cardiac toxicity is predicted by dosimetric and patient factors rather than changes in 18F-FDG PET determination of myocardial activity after chemoradiotherapy for esophageal cancer. Radiother Oncol., 2012, Vol. 104, рр. 72–77.

26. Ghobadi G., van der Veen S., Bartelds B. et al. Physiological interaction of heart and lung in thoracic irradiation. Int. J. Radiat. Oncol. Biol. Phys., 2012, Vol. 84, No. 5, рр. 639–646.

27. Cella L., Liuzzi R., Conson M. Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors. Int. J. Radiat. Oncol. Biol. Phys., 2013, Vol. 87, No. 2, рр. 304–331.


Дополнительные файлы

Для цитирования: Лебедева Ж.С., Литвинов А.П. АНАЛИЗ ДАННЫХ QUANTEC ПО ТОЛЕРАНТНЫМ ДОЗАМ ОБЛУЧЕНИЯ СЕРДЦА И НОВЫЕ КЛИНИЧЕСКИЕ ДАННЫЕ. Лучевая диагностика и терапия. 2017;(4):68-74. https://doi.org/10.22328/2079-5343-2017-4-68-74

For citation: Lebedeva Z.S., Litvinov A.P. ANALYSIS OF QUANTEC DATA ON HEART TOLERANT DOSE AND NEW CLINICAL DATA. Diagnostic radiology and radiotherapy. 2017;(4):68-74. (In Russ.) https://doi.org/10.22328/2079-5343-2017-4-68-74

Просмотров: 117

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)