Preview

Diagnostic radiology and radiotherapy

Advanced search

Optimization of low-dose chest CT protocols for the evaluation of the ground glass nodules using different iterative reconstruction algorithms

https://doi.org/10.22328/2079-5343-2019-10-4-20-32

Abstract

Rapid development and implementation of the computed tomography (CT) in the Russian radiological practice reads to the significant increase in both the individual patient doses and collective dose of the Russian population from computed tomography.

For the successful implementation of the optimization and dose reduction techniques it is necessary to develop and implement the methods of subjective (expert) image quality assessment. The current study was focused on the development of the composite method of the CT image quality assessment using an anthropomorphic chest phantom and imitators of the nodules for the detection of the ground-glass nodules. The method includes the detection of the nodules on the CT scan series as well as the assessment of the quality of the images using 5-grade Likert scale corresponding to the designed criteria. The method was evaluated for the development of the preliminary low-dose chest CT protocols using different reconstruction algorithms. The results of the study were based on the expert opinion of ten radiologists. They indicate the possibility of the significant (up to a factor of four) reduction of the effective doses of the patients related to the reduction of mAs for the CT scans of the chest for the detection of ground-glass nodules without a reduction in image quality. The best results corresponded to the algorithm of the model iterative reconstructions. Results of the study would be further evaluated on patients within a dedicated clinical trial.

About the Authors

G. V. Berkovich
Almazov National Medical Research Centre
Russian Federation

Gleb V. Berkovich

St. Petersburg


L. A. Chipiga
St. Petersburg institute of radiation hygiene after prof. P. V. Ramzaev; A М. Granov Russian Scientific Center of Radiology and Surgical Technologies
Russian Federation
Larisa A. Chipiga


A. V. Vodovatov
Almazov National Medical Research Centre; St. Petersburg institute of radiation hygiene after prof. P. V. Ramzaev
Russian Federation
Alexander V. Vodovatov


A. Yu. Silin
Yauza Medical Center
Russian Federation

Anton Yu. Silin

Moscow



A. A. Karatetskiy
Almazov National Medical Research Centre
Russian Federation

Alexander A. Karatetskiy

St. Petersburg

 



G. E. Trufanov
Almazov National Medical Research Centre
Russian Federation

Gennady E. Trufanov

St. Petersburg



References

1. Onischenko G.G., Popova A.Y., Romanovich I.K., Vodovatov A.V., Bashketova N.S., Istorik O.A., Chipiga L.A., Shatsky I.G., Repin L.V., Biblin A.M. Modern principles of the radiation protection from sources of ionizing radiation in medicine. Part 1: Trends, structure of x-ray diagnostics and doses from medical exposure. Radi at s ion nay a Gygiena = Radiation Hygiene, 2019, Vol. 12, No. 1, pp. 6-24. (In Russ.).

2. Samei E. et. al. Medical Imaging Dose Optimization from Ground up: Expert Opinion of an International Summit // J. Radiol. Prot. 2018. Vol. 38, No. 3, pp. 967-989.

3. Jarvinen H., Vassileva J., Samei E., Wallace A, Vano E. and Rehani M., Patient dose monitoring and the use of diagnostic reference levels for the optimization of protection in medical imaging: current status and challenges worldwide. Journal of Medical Imaging, 2017. Vol. 4, N 3, pp. 0312141-7.

4. Matkevich E.I., Sinitsyn V.E., Zelikman M.I., Kruchinin S.A., Ivanov I.V. Main directions of reducing patient irradiation doses in computed tomography. REJR 2018. Vol. 8 (3). pp. 60-73.

5. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection: translation from English / ed by M. F. Kiselev, N. K. Shandala. Моscow: Alana, 2009. 312 p. (In Russ.).

6. ICRP Publication 105. Radiation Protection in Medicine / Russian translation under M. Balonov. Saint Petersburg: NIIRG, 2011, 66 p. (In Russ.).

7. Radiation Protection and safety in medical uses of ionizing radiation. Specific safety guide SSG-46. IAEA, Vienna, 2018. 340 p.

8. Final recommendation statement: lung cancer: screening. U.S. Preventive Services Task Force. December 2016. Онлайн-ресурс. Доступен по адресу:www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/lung-cancer-screening. Дата последнего доступа 10.11.2019.

9. laccarino J.M., Clark J., Bolton R., Kinsinger L., Kelley M., Slatore C.G., Au D.H., Wiener R.S. A National Survey of Pulmonologists' Views on Low-Dose Computed Tomography Screening for Lung Cancer // Ann. Am. Thorac. Soc. 2015. Vol. 12, No. 11. Р 1667-1675.

10. Marshall H.M., Bowman R.V., Yang I.A., Fong K.M., Berg C.D. Screening for lung cancer with low-dose computed tomography: a review of current status // Journal of Thoracic Disease. 2013. Vol. 5. Р 524-539.

11. Chipiga L.A. Evaluation of tube current modulation programms for the optimization of scan protocols in computed tomography. Radiatsionnaya Gygiena = Radiation Hygiene, 2019, Vol. 12, No. 1, рр. 104-114 (In Russ.).

12. Boas F.E., Fleischmann D. CT artifacts: causes and reduction techniques // Imaging in Medicine. 2012. N 2 (4). Р. 229-240.

13. Verdun F.R. et al. Image quality in CT: From physical measurements to model observers // Physica Medica. 2015. No. 8 (31). Р, 823-843.

14. Mayo-Smith W.W. et al. How I Do It: Managing Radiation Dose in CT // Radiology. No. 3 (273). Р 657-672.

15. Zarb F., Rainford L., McEntee M.F. Image quality assessment tools for optimization of CT images // Radiography. 2010. No. 2 (16). Р, 147-153.

16. Good W.F., Gur D., Feist J.H., Thaete F.L. et al. Subjective and objective assessment of image quality — a comparison // J. Digit. Imaging. 1994. Vol. 7, No. 2. Р. 77-78.

17. Aichinger H. Radiation exposure and image quality in x-ray diagnostic radiology: physical principles and clinical applications. Heidelberg; New York: Springer, 2012. 2nd ed. XIV, 307 p.

18. DeWerd L.A., Kissick M. The phantoms of medical and health physics: devices for research and development. New York: Springer, 2014, 286 p.

19. European Guidelines on quality criteria for computed tomography. EUR 16262. European Commission, 1999. 107 p.

20. Gavrilov P.V., Baulin I.A., Lukina O.V. Standartized interpretation and control of the detected solitary nodules in lungs using Lung Imaging Reporting and Data System. Medical Alliance, 2017, No. 3, pp. 17-27.

21. Doo K.W., Kang E.Y., Yong H.S., Woo O.H., Lee K.Y., Oh Y.W. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: An anthropomorphic thoracic phantom study // British Journal of Radiology. 2014. Vol. 87, No. 1041. Р. 1-10.

22. Li Q., Fan L., Cao E.T., Li Q.C., Gu Y.F., Liu S.Y. Quantitative CT analysis of pulmonary pure ground-glass nodule predicts histological invasiveness // European Journal of Radiology. 2017. Vol. 89. Р. 67-71.

23. Xu Y., He W., Chen H., Hu Z., Li J., Zhang T. Impact of the adaptive statistical iterative reconstruction technique on image quality in ultra-low-dose CT // Clinical Radiology. 2013. Vol. 68, No. 9. Р. 902-908.

24. Kitami A., Sano F., Hayashi S., Suzuki K., Uematsu S., Kamio Y., Kunimura T. Correlation between histological invasiveness and the computed tomography value in pure ground-glass nodules // Surgery Today, 2016. Vol. 46 (5). Р 593-598.


Review

For citations:


Berkovich G.V., Chipiga L.A., Vodovatov A.V., Silin A.Yu., Karatetskiy A.A., Trufanov G.E. Optimization of low-dose chest CT protocols for the evaluation of the ground glass nodules using different iterative reconstruction algorithms. Diagnostic radiology and radiotherapy. 2019;(4):20-32. (In Russ.) https://doi.org/10.22328/2079-5343-2019-10-4-20-32

Views: 1404


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)