Computed tomography as a method of control of percutaneous tumor cryoablation
https://doi.org/10.22328/2079-5343-2019-10-4-57-65
Abstract
Purpose: to develop methodological aspects of CT navigation and control of tumor cryoablation.
Methods and materials. The study included 38 patients with malignant neoplasms of different localization, who underwent 58 cryoablation procedures with CT navigation. CT control was performed in sequential mode, in the mode of CT fluoroscopy or as an part of robot-assisted operations. The accuracy of cryoprobe positioning and the possibility of visual control of the ice-ball propagation were evaluated.
Results: in all cases of cryoablation the use of CT made it possible to install accurately cryoprobes in the tumor and visually control the formation of the ice-sphere.
Conclusion: CT is the optimal method of image guidance for cryoablation, which allows to control both the positioning of cryoprobes in the tumor and the process of ice front propagation. Depending on the characteristics of the tumor, technical equipment and experience of the operator, one or another method of CT navigation of instruments can be chosen.
About the Authors
I. A. BurovikRussian Federation
Iliya A. Burovik
St. Petersburg
G. G. Prokhorov
Russian Federation
Georgiy G. Prokhorov
St. Petersburg
References
1. Hoffmann R., Rempp H., Kefiler D.-E. et al. MR-guided microwave ablation in hepatic tumours: initial results in clinical routine // Eur. Radiol. 2017. Vol. 27, No. 4. P. 1467-1476. DOI: 10.1007/s00330-016-4517-x.
2. Yu J., Liang P., Yu X.-L. et al. Us-guided percutaneous microwave ablation versus open radical nephrectomy for small renal cell carcinoma: intermediate-term results // Radiology. 2014. Vol. 270, No. 3. P. 880-887. DOI: 10.1148/radiol.13130275.
3. Chen J.B., Li J.L., He L.H. et al. Radical treatment of stage IV pancreatic cancer by the combination of cryosurgery and iodine-125 seed implantation // World J. Gastroenterol. 2012. Vol. 18. P. 7056-7062. DOI: 10.3748/wjg.v18.i47.7056.
4. Belyaev A.M., Prokhorov G.G., Burovik I.A. et al. Minimally invasive puncture cryoablation of soft tissue tumors in palliative medicine // Palliative medicine and rehabilitation. 2019. Vol. 1. P. 12-18 (In Russ.).
5. Erinjeri J.P., Clark T.W.I. Cryoablation: mechanism of action and devices // J. Vasc. Interv. Radiol. 2010. Vol. 21, No. 8. P. 187-191. DOI: 10.1016/j.jvir.2009.12.403.
6. Bhagavatula S., Shyn P.B. Image-guided renal interventions // Radiol. Clin. North Am. 2017. Vol. 55, No. 2. P. 359-371. DOI: 10.1016/j.rcl.2016.10.013.
7. Callstrom M.R., Kurup A.N. Percutaneous ablation for bone and soft tissue metastases — why cryoablation? // Skeletal Radiology. 2009. Vol. 38, No. 9. P. 835-839. DOI: 10.1007/s00256-009-0736-4.
8. Sabel M.S. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses // Cryobiology. 2009. Vol. 58. P. 1-11. doi: 10.1016/j.cryobiol.2008.10.126
9. Rovere-Querini P., Manfredi A.A. Tumor destruction and in situ delivery of antigen presenting cells promote anti-neoplastic immune responses: implications for the immunotherapy of pancreatic cancer // J.O.P. 2004. Vol. 5. P. 308-314.
10. Burovik I.A., Prokhorov G.G., Lushina P.A. et al. Robot-assisted percutaneous interventions under CT control: the first experience // Medical visualization. 2019. Vol. 2. P. 27-35 (In Russ.).
11. Lipnik A.J., Brown D.B. Image-Guided Percutaneous Abdominal Mass Biopsy: Technical and Clinical Considerations // Radiol. Clin. North Am. 2015. Vol. 53, No. 5. P. 1049-1059. DOI: 10.1016/j.rcl.2015.05.007.
12. Bhagavatula S.K., Lane J., Shyn P.A Radiologist's View of Tumor Ablation in the Radiology Suite // Anesthesiol. Clin. 2017. Vol. 35, No. 4. P. 617-626. DOI: 10.1016/j.anclin.2017.07.007.
13. Carberry G.A1., Lubner M.G., Wells S.A. et al. Percutaneous biopsy in the abdomen and pelvis: a step-by-step approach // Abdom. Radiol. 2016. Vol. 41, No. 4. P. 720-742. DOI: 10.1007/s00261-016-0667-1.
14. Uchida M., Imaide Y., Sugimoto K. et al. Percutaneous cryosurgery for renal tumours // Br. J. Urol. 1995. Vol. 75. P. 132-136. DOI: 10.1111/j.1464-410X.1995.tb07297.x.
15. Chosy S.G., Nakada S.Y., Lee F.T. et al. Monitoring renal cryosurgery: predictors of tissue necrosis in swine // J. Urol. 1998. Vol. 159. P. 1370-1374. DOI: 10.1016/S0022-5347(01)63618-8.
16. Gage A.A., Baust J. Mechanisms of tissue injury in cryosurgery // Cryobiology. 1998. Vol. 37. P. 171-186. DOI: 10.1006/cryo.1998.2115.
17. Campbell S.C., Krishnamurthi V., Chow G. et al. Renal cryosurgery: experimental evaluation of treatment parameters // Urology. 1998. Vol. 52. P. 29-33. DOI: 10.1016/S0090-4295(98)00169-1.
18. Baust J., Gage A.A., Ma H., Zhang Z.M. Minimally invasive cryosurgerytech-nology advances // Cryobiology. 1997. No. 34. Р 373-384. DOI: 10.1006/cryo.1997.2017.
19. Allen B.C., Remer E.M. Percutaneous cryoablation of renal tumors: patient selection, technique, and postprocedural imaging // Radiographics. 2010. Vol. 30. P. 887-900. DOI: 10.1148/rg.304095134.
20. Benjamin H.G., Thomas J.G., Gregory J.N. et al. Percutaneous Renal Cryoablation: Short-Axis Ice-Ball Margin as a Predictor of Outcome // J. Vasc. Interv. Radiol. 2016. Vol. 27, ^. 3. P. 403-409. DOI: 10.1016/j.jvir.2015.11.035.
Review
For citations:
Burovik I.A., Prokhorov G.G. Computed tomography as a method of control of percutaneous tumor cryoablation. Diagnostic radiology and radiotherapy. 2019;(4):57-65. (In Russ.) https://doi.org/10.22328/2079-5343-2019-10-4-57-65