Preview

Diagnostic radiology and radiotherapy

Advanced search

Possibilities of small-size glioblastoma visualization by PET-CT with 11C-choline (experimental study)

https://doi.org/10.22328/2079-5343-2020-11-4-30-36

Abstract

Introduction. The minimum size of malignant brain tumors detected by positron emission and computed tomography (PET-CT) exceeds 6-7 mm. One of the ways to increase the sensitivity of PET-CT in detecting of malignant brain tumors is to increase the administered activity of the radiopharmaceutical 11C-choline.
Purpose & tasks. The aim of the study was to experimentally study the possibility of obtaining a small-size glioblastoma (GB) images (up to 4 mm) by PET-CT with the 11C-choline.
Materials and methods. The study was performed on 24 rats with implanted intracerebral tumor «Glioma C6» (glioblastoma). Animals underwent magnetic resonance imaging (MRI) with contrast enhancement (CE) and PET-CT with 11C-choline for 21 days after tumor transplantation.
Results. It was shown that using two methods: MRI with CE and PET-CT with 11C-choline, a glioblastoma up to 4 mm can be convincingly visualized.
Conclusion. The data obtained can be crucial for early detection of glioblastoma, justification of treatment tactics, evaluation of the treatment effectiveness and prediction the outcome of the disease.

About the Authors

N. A. Kostenikov
Granov Russian Research Center of Radiology & Surgical Technology
Russian Federation

Nikolai A. Kostenikov.
St. Petersburg.



V. F. Dubrovskaya
Granov Russian Research Center of Radiology & Surgical Technology
Russian Federation

Violetta F. Dubrovskaya.
St. Petersburg.



E. G. Kovan'ko
Granov Russian Research Center of Radiology & Surgical Technology
Russian Federation

Elena G. Kovan'ko.
St. Petersburg.



O. Yu. Mirolyubova
Granov Russian Research Center of Radiology & Surgical Technology
Russian Federation

Olga Yu. Mirolyubova.
St. Petersburg.



Yu. R. Ilyushchenko
Granov Russian Research Center of Radiology & Surgical Technology
Russian Federation

Yuriy R. Ilyushchenko.
St. Petersburg.



A. A. Stanzhevsky
Granov Russian Research Center of Radiology & Surgical Technology
Russian Federation

Andrey A. Stanzhevsky.
St. Petersburg.



References

1. Olyushin V.E., Filatov M.V., Ulitin A.Yu., Rostovtsev D.M., Faddeva T.N., Maslova L.N., Papayan. G.V. New techniques in therapy of patients with malignant gliomas of hemisphere of the large brain. Practical oncology, 2013, Vol. 14, No. 3, рр. 175-179 (In Russ.).

2. Vajkoczy P., Farhadi M., Gaumann A. et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2 // The Journal of Clinical Investigation. 2002. Vol. 109, No. 6. Р. 777-785.

3. Holzgreve A., Brendel M., Gu S., Carlsen J., Mille E., Boning G., Mastrella G., Unterrainer M., Gildehaus F.J., Rominger A., Bartenstein P. Monitoring of Tumor Growth with [18F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches // Frontiers in neuroscience. 2016. Vol. 10. Р. 260. https://doi.org/10.3389/fnins.2016.00260

4. Trikalinos N.A., Nihashi T., Evangelou E., Terasawa T. Positron emission tomography (PET) for prediction of glioma histology: protocol for an individual-level data meta-analysis of test performance // BMJ open. 2018. Vol. 8, No. 2. e020187. http://dx.doi.org/10.1136/bmjopen-2017-020187.

5. Bogsrud T., Londalen A., Brandal P., Leske H., Panagopoulos I., Borghammer P., Bach-Gansmo T. 18F-fluciclovine PET/CT in suspected residual or recurrent high-grade glioma // Clinical nuclear medicine. 2019. Vol. 44, No. 8. Р. 605-611.

6. Khmelev A.V. Positron emission tomography: physical and technical aspects. Moscow: Publishing house Trovant, 2016, 334 p. (In Russ). ISBN 978-5-89513-392-7.

7. Dolgushin M.B., Odzharova A.A., Tulin P.Y., Vikhrova N.B., Nevzorov D.I., Menkov M.A., Nechipai E.A., Kobyakova E.A., Bekyashev A.K. Use 18F-choline PET in Cerebral Gliomas. Medical Visualization, 2014, No. 3, рр. 73-83 (In Russ.).

8. Kostenikov N.A., Tyutin L.A., Fadeev N.P., Panfilenko A.F., Zykov E.M., Ilyushchenko Y.R., Makeeva O.Y. Differential diagnosis of brain gliomas by positron emission tomography using various radiopharmaceuticals. Journal of radiology and nuclear medicine, 2016, Vol. 28, No. 5, рр. 13-18 (In Russ.). https://doi.org/10.20862/0042-4676-2014-0-5-13-18.

9. Grobben B., De Deyn P., Slegers H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion // Cell and tissue research. 2002. Vol. 310, No. 3. Р. 257-270. DOI: 10.1007/s00441-002-0651-7.

10. Tolvanen T., Yli-Kerttula T., Ujula T., Autio A., Lehikoinen P., Minn H., Roivainen A. Biodistribution and radiation dosimetry of [11C]choline a comparison between rat and human data // Europ. J. of Nuclear Medicine and Molecular Imaging. 2010. Vol. 37, No. 5. Р. 874-883.

11. Berezhnaya N.M., Chehun V.F. Immunology of malignant growth. Kiev: Publishing house Naukova Dumka, 2005, 791 p. (In Russ.).

12. Lisyany N.I., Behlska L.N., Rozumenko V.D., Potapova A.I. The study of antibodies level to glial tumours antigens in blood of neurooncological patients. Ukrainian Neurosurgical Journal, 2009, No. 2, рр. 26-30 (In Russ.).

13. Sergeeva N.S., Marshutina N.V. General concepts about serological biomarkers and their positions in oncology. Practical oncology, 2011, Vol. 12, No. 4, рр. 147-154 (In Russ.).


Review

For citations:


Kostenikov N.A., Dubrovskaya V.F., Kovan'ko E.G., Mirolyubova O.Yu., Ilyushchenko Yu.R., Stanzhevsky A.A. Possibilities of small-size glioblastoma visualization by PET-CT with 11C-choline (experimental study). Diagnostic radiology and radiotherapy. 2020;11(4):30-36. (In Russ.) https://doi.org/10.22328/2079-5343-2020-11-4-30-36

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)