Preview

Diagnostic radiology and radiotherapy

Advanced search

DIFFERENTIATION BETWEEN BRAIN TUMOR RECURRENCE AND RADIATION INJURY USING DIFFUSION-WEIGHTED IMAGING AND PERFUSION MAGNETIC RESONANCE IMAGING: THE COMPARATIVE STUDY

Abstract

The aim of the study was to compare the diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) and T2* MR-perfusion in differential diagnosis between recurrent brain tumor (RT) and post-radiation injury (PRI). We retrospectively reviewed 33 patients with brain tumors after radiation therapy (male - 16, female - 17, mean age = 40±16 years). Entry criteria included new or progressive MR imaging enhancing lesions after treatment. Conventional MRI (T1, T2, FLAIR, post-gadolinium T1-weighted images) DWI and T2* MR-perfusion were performed.The lesions were grouped according to MR enhancement that was due either TR (n=29) or PRI (n=26).The data analysis included calculation of the apperent diffusion coeficient (ADC) and rCVB values in the enhancing lesions. The rCBV values were normalized to the normal appearing grey matter. Recurrence and nonrecurrence groups were compared by means of Mann-Whitney U-test. The level of P<0,05 was set as significant. The total count of 55 enhancing lesions was analased. The recurrence group showed statistically significant lower ADC values and higher rCBV values than group with PRI. ADC threshold ratio equal to 1056 provided a distinction between the RT and the PRI with 69% sensitivity and 92% specificity. rCBV threshold ratio equal to 0,8 provided a distinction between the RT and the PRI with 92% sensitivity and 95% specificity. Thus, DWI has lower sensitivity in distinction RT from PRI than T2* MR-perfusion.

About the Authors

Zh. I. Savintceva
Institute of Human Brain named after N. P. Bekhtereva of RAS
Russian Federation


T. N. Trofimova
Institute of Human Brain named after N. P. Bekhtereva of RAS
Russian Federation


T. Yu. Skvortsova
Institute of Human Brain named after N. P. Bekhtereva of RAS
Russian Federation


A. F. Gurchin
Institute of Human Brain named after N. P. Bekhtereva of RAS
Russian Federation


A. V. Smirnov
Institute of Human Brain named after N. P. Bekhtereva of RAS
Russian Federation


References

1. Долгушин М. Б., Пронин И. Н., Корниенко В. Н. и др. Перфузионная компьютерная томография в динамической оценке эффективности лучевой терапии при вторичном опухолевом поражении головного мозга // Вестник РОНЦ им. Н. Н. Блохина РАМН.- 2008.- Т. 19, № 4.- С. 36-46.

2. Ильялов С. Р., Голанов А. В., Пронин И. Н. и др. Применение стереотаксической радиохирургии на аппарате «Гамма-нож» в лечении внутримозговых метастазов экстракарниальных опухо лей // Журн. вопросы нейрохирургии им. Н. Н. Бурденко.- 2010.- № 1.- С. 35-42.

3. Смолин А. В., Конев А.В., Кобяков Г.Л. и др. Химиолучевая терапия мультиформной глиобластомы головного мозга // Фарматека (Онкология).- 2011.- № 7.- С. 41-49.

4. Schwartzbaum J., Fisher J. L., Aldape K. D., Wrensch M. Epidemiology and molecular pathology of glioma // Nature Clinical Practice Neurology.- 2006.- Vol. 2.- P 494-503.

5. Yoshii Y. Pathological review of late cerebral radionecrosis // Brain Tumor Pathol.- 2008.- Vol. 25.- P 51-58.

6. Трофимова Т. Н, Трофимов Е. А. Современные стратегии лучевой диагностики при первичных опухолях головного мозга // Практическая онкология.- 2013.- Т. 14, № 3.- С. 141-147.

7. Wen P. Y., Macdonald D. R., Reardon D. A. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group // J. Clin. Oncol.- 2010.- Vol. 28.- P 1963-1972.

8. Mullins M. E., Barest G. D., Schaefer P. W. et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis // Am. J. Neuroradiol.- 2005.- Vol. 26.- P 1967-1972.

9. Bayrakli F., Dinger A., Sav A. et al. Late brain stem radionecrosis seventeen years after fractionated radiotherapy // Turkish Neurosurgery.- 2009.- Vol. 19, № 2.- P 182-185.

10. Siu A., Wind J., Jorgulescue J. et al. Radiation necrosis following treatment of high grade glioma - a review of the literature and current understanding // Acta. Neurochir.- 2012.- Vol. 154.- P 191-201.

11. Sugahara T., Korogi Y., Kochi M. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas // J. Magn. Reson. Imaging.- 1999.- Vol. 9, № 1.- P 53-60.

12. Hayashida Y., Hirai T., Morishita S. et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity // Am. J. Neuroradiol.- 2006.- Vol. 27.- P 1419-1425.

13. Ellingson B. M., Malkin M. G., Rand S. D. et al. Validation of functional diffusion maps (IIDMs) as abiomarker for human glioma cellularity // J. Magn. Reson. Imaging.- 2010.- Vol. 31, № 3.- P. 538-548.

14. Корниенко В. Н., Пронин И. Н. Диагностическая нейрорадиология: 2 изд. в 3-х т.. - М.: И. П. Андреева, 2008.- Т. 1.- 445 с.

15. Sheweiki D., Jtin A., Soffer D., Keshet E. Vasculfr endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis // Nature.- 1992.- Vol. 359.- P 843-845.

16. Burger P. C., Boyko O. B. The pathology of central nervous system radiation injury // Radiation injury in the nervous system / eds. by P H. Gutin, S. A. Leibel, G. E. Sheline.- N. Y.: Raven, 1991.- P 191-208.

17. Савинцева Ж. И., Скворцова Т. Ю., Бродская 3. Л. Современные методы нейровизуализации в дифференциальной диагностике лучевых поражений головного мозга у больных с церебральными опухолями // Лучевая диагностика и терапия.- 2012.- № 1 (3).- С. 15-23.

18. Biousse V., Newman N. J., Hunter S. B., Hudgins P. A. Diffusion-weighted imaging in radiation necrosis // J. Neurol. Neurosurg. Psychiatry.- 2003.- Vol. 74.- P 382-384.

19. Hein P. A., Eskey C. J., Dunn J. F. et al. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury // Am. J. Neuroradiol.- 2004.- Vol. 25, № 2.- P 201-209.

20. Bobek-Billewicz B., Stasik-Pres G., Majchrzak H. et al. Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR-spectroscopy // Folia Neuropathol.- 2010.- Vol. 48, № 2.- P 81-92.

21. Sadeghi N., D’haene N., Decaestecker C. et al. Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies // Am. J. Neuroradiol.- 2008.- Vol. 29, № 3.- P 476-482.

22. Sundgren P. C., Fan X., Weybright P. et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enchancing lesions // Magnetic Resonance Imaging.- 2006.- Vol. 24, № 9.- P 1131-1114.

23. Савинцева Ж. И., Трофимова Т. Н., Скворцова Т. Ю., Бродская Л. Сопоставление информативности МР-перфузии и ПЭТ с [11С]метионином в дифференциации продолженного роста церебральных опухолей и лучевых поражений головного мозга после комбинированноголечения // Медицинская визуализация.- 2014.- № 5.- С. 10-13.

24. Sugahara T., Korogi Y., Tomiguchi S. et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue // Am. J. Neuroradiol.- 2000.- Vol. 21, № 5.- P 901-909.

25. Kim Y. H., Oh S. W., Lim Y. J. et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: Assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI // Clinical Neurology and Neurosurgery.- 2010.- Vol. 112, № 9.- P 758-765.

26. Matsusue E., Fink R. J., Rockhill J. K. et al. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging // Diagnostic neuroradiology.- 2010 - Vol. 52.- P 297-306.

27. Mitsuya K., Nakasu Y., Horiguchi S. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery // J. Neurooncol.- 2010.- Vol. 99.- P 81-88.

28. Hu L. S., Eschbacher J. M., Heiserman J. E. et al. Reevaluating the imaging definition of tumor progression: perfusion NMI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival // Neuro-Oncology.- 2014.- Vol. 14, № 7.- P 919-930.


Review

For citations:


Savintceva Zh.I., Trofimova T.N., Skvortsova T.Yu., Gurchin A.F., Smirnov A.V. DIFFERENTIATION BETWEEN BRAIN TUMOR RECURRENCE AND RADIATION INJURY USING DIFFUSION-WEIGHTED IMAGING AND PERFUSION MAGNETIC RESONANCE IMAGING: THE COMPARATIVE STUDY. Diagnostic radiology and radiotherapy. 2015;(4):27-34. (In Russ.)

Views: 661


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5343 (Print)